Math, asked by soccer5kid, 10 months ago

Verify the formula (tan(α - β) = \frac{tan \alpha - tan \beta }{1 + tan \alpha tan \beta}) for: α = \frac{\pi }{3} and β = \frac{\pi }{6}

Answers

Answered by Anonymous
25

\Large{\underline{\underline{\mathfrak{\green{\bf{Question}}}}}}

Verify the formula tan(α - β) = \sf{\:\dfrac{\tan \alpha - \tan \beta }{1 + \tan \alpha \tan \beta}} for:- α = \sf{\:\dfrac{\pi }{3}} and β = \sf{\:\dfrac{\pi }{6}}

\Large{\underline{\underline{\mathfrak{\green{\bf{Prove}}}}}}

:\mapsto\sf{\:\tan(\alpha-\beta)\:=\:\dfrac{\tan \alpha - \tan \beta}{1+\tan \alpha\times\tan \beta}}

\:\:\:\:\:\small\pink{\sf{\:( keep\:value\:of\:\alpha\:and\beta)}}

:\mapsto\sf{\:\tan(\dfrac{\pi}{3}-\dfrac{\pi}{6})\:=\:\dfrac{\tan \dfrac{\pi}{3}-\tan \dfrac{\pi}{6}}{1+\tan \dfrac{\pi}{3}\times\tan \dfrac{\pi}{6}}}

\:\:\:\:\small\pink{\sf{\:( \tan \dfrac{\pi}{3}\:=\:\sqrt{3} )}}

\:\:\:\:\small\pink{\sf{\:( \tan \dfrac{\pi}{6}\:=\:\dfrac{1}{\sqrt{3}} )}}

:\mapsto\sf{\:\tan(\dfrac{2 \pi-\pi}{6})\:=\:\dfrac{\sqrt{3}-\dfrac{1}{\sqrt{3}}}{1+\sqrt{3}\times\dfrac{1}{\sqrt{3}}}}

:\mapsto\sf{\:\tan(\dfrac{\pi}{6})\:=\:\dfrac{3-1}{\sqrt{3}(1+1)}}

:\mapsto\sf{\:(\dfrac{1}{\sqrt{3}})\:=\:\dfrac{\cancel{2}}{\cancel{2}\sqrt{3}}}

:\mapsto\sf{\:\dfrac{1}{\sqrt{3}}\:=\:\dfrac{1}{\sqrt{3}}}

\Large\sf{\bf{\:L.H.S.\:=\:R.H.S.}}

That't proved

______________________

Answered by Anonymous
4

Answer:

\large\boxed{\sf{\dfrac{1}{\sqrt{3}}}}

Step-by-step explanation:

Given formula to verify :

 \tan( \alpha  -  \beta )  =  \dfrac{ \tan\alpha  -  \tan \beta   }{1 +  \tan \alpha  \tan \beta  }

Also, given that,

 \alpha  =  \dfrac{\pi}{3}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: and \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \beta  =  \dfrac{\pi}{6}

For verification:

L.H.S

 =  \tan( \alpha  -  \beta )  \\  \\  =  \tan( \frac{\pi}{3}  -  \dfrac{\pi}{6}  )  \\  \\  =  \tan( \dfrac{\pi}{3} ) \\  \\  =  \dfrac{1}{ \sqrt{3} }

R.H.S

 =  \dfrac{ \tan\alpha  -  \tan \beta  }{1 +  \tan \alpha  \tan \beta }  \\  \\  =  \dfrac{ \tan \frac{\pi}{3}  -  \tan \frac{\pi}{6} }{1 +  \tan( \frac{\pi}{3} ) \tan( \frac{\pi}{6} )  }  \\  \\  =  \dfrac{ \sqrt{3} -  \frac{1}{ \sqrt{3} }  }{1 + ( \sqrt{3} \times  \frac{1}{ \sqrt{3} })  }  \\  \\  =  \dfrac{ \frac{3 - 1}{ \sqrt{3} } }{1  + 1}  \\  \\  =  \dfrac{ \frac{2}{ \sqrt{3} } }{2}  \\  \\  =  \dfrac{1}{\sqrt{3} }

Thus, L.H.S = R.H.S

Hence, Verified.

Similar questions