verify the identity (a+b)³ = a³+b³+3ab(a+b)
Solve please
Answers
Answered by
1
Answer:
(a-b)³=a³-3 a²b+3 ab²-b³
By transposition,
Answered by
12
.
.
.
(a + b)³ = a³ + b³ + 3ab(a + b)
(a + b)(a + b)(a + b) = a³ + b³ + 3ab(a + b)
(a(a + b) + b(a + b))(a + b) = a³ + b³ + 3ab(a + b)
(a² + ab + ab + b²)(a + b) = a³ + b³ + 3ab(a + b)
(a² + 2ab + b²)(a + b) = a³ + b³ + 3ab(a + b)
a(a² + 2ab + b²) + b(a² + 2ab + b²) = a³ + b³ + 3ab(a + b)
a³ + 2a²b + ab² + a²b + 2ab² + b³ = a³ + b³ + 3ab(a + b)
a³ + b³ + 3a²b + 3ab² = a³ + b³ + 3ab(a + b)
a³ + b³ + 3ab(a + b) = a³ + b³ + 3ab(a + b)
LHS = RHS
.
.
.
Hope it's helpful to you
Similar questions