Math, asked by sharadgamerofficial, 27 days ago

verify the identity (a+b)³ = a³+b³+3ab(a+b)
Solve please​

Answers

Answered by piyushkumar2231
1

Answer:

(a-b)³=a³-3 a²b+3 ab²-b³

By transposition,

Answered by Anonymous
12

\huge \bigstar { \underline{ \mathtt{ \red{A}{ \pink{n}{ \color{blue}{s}{ \color{gold}{w}{ \color{aqua}{e}{ \color{lime}{r}}}}}}}}}★

.

.

.

(a + b)³ = a³ + b³ + 3ab(a + b)

(a + b)(a + b)(a + b) = a³ + b³ + 3ab(a + b)

(a(a + b) + b(a + b))(a + b) = a³ + b³ + 3ab(a + b)

(a² + ab + ab + b²)(a + b) = a³ + b³ + 3ab(a + b)

(a² + 2ab + b²)(a + b) = a³ + b³ + 3ab(a + b)

a(a² + 2ab + b²) + b(a² + 2ab + b²) = a³ + b³ + 3ab(a + b)

a³ + 2a²b + ab² + a²b + 2ab² + b³ = a³ + b³ + 3ab(a + b)

a³ + b³ + 3a²b + 3ab² = a³ + b³ + 3ab(a + b)

a³ + b³ + 3ab(a + b) = a³ + b³ + 3ab(a + b)

LHS = RHS

.

.

.

Hope it's helpful to you

Similar questions