Math, asked by Tanisha2909, 1 year ago

verify the identity x cube-y cube = (x-y) (x square+y square +xy)

Answers

Answered by Shubhendu8898
19

We know that,


(a+b)³ = (a+b)²(a+b)


(a+b)³ = (a² + b² + 2ab)(a+b)


(a+b)³ = a(a² + b² + 2ab) +b(a² + b² + 2ab)


(a+b)³ = a³ + ab² + 2a²b + a²b + b³ +2ab²


(a+b)³ = a³ + b³ + 3ab² + 3a²b


We have find a³ + b³. therefore, transfer other terms to one side:


(a+b)³ - 3a²b - 3a²b = a³ + b³


a³ + b³ = (a+b)³ - 3a²b - 3a²b


a³ + b³ = (a+b)³ -3ab(a+b)


Taking (a+b) common,


a³ + b³ = (a+b){(a+b)² -3ab}


a³ + b³ = (a+b){a² + b² + 2ab -3ab}


a³ + b³ = (a+b)(a² + b² - ab)

Hence proved;


Note:-

(a+b)² = (a+b)(a+b)

= a(a+b) +b(a+b)

= a² + ab + ba + b²

= a² + b² + 2ab


Answered by donibhagyashree
0

Answer:

Step-by-step explanation:

x cube -y cube= (x-y)(x square +xy+y square)

Similar questions