Math, asked by sahil37354, 9 months ago

verify the lhs =rhs class 8 ​

Attachments:

Answers

Answered by deodeoprakash
0

Answer:

this is your answer hope it will help you

Attachments:
Answered by spacelover123
1

In the above question, we need to verify if the given property is true ⇒

(a-b)\neq (b-a)

(i)

a=\frac{1}{6}

b=\frac{1}{5}

(\frac{1}{6}-\frac{1}{5})\neq   (\frac{1}{5}-\frac{1}{6})

LCM of 6 and 5 is 30

(\frac{1*5}{6*5}-\frac{1*6}{5*6})\neq   (\frac{1*6}{5*6}-\frac{1*5}{6*5})

(\frac{5}{30}-\frac{6}{30})\neq   (\frac{6}{30}-\frac{5}{30})

\frac{-1}{30} \neq \frac{1}{30}

\frac{-1}{30} \neq \frac{1}{30} and therefore we can conclude that (a-b)\neq (b-a).

(ii)

a=\frac{3}{5}

b=\frac{5}{3}

(\frac{3}{5} -\frac{5}{3} )\neq (\frac{5}{3} -\frac{3}{5} )

LCM of 5 and 3 is 15.

(\frac{3*3}{5*3} -\frac{5*5}{3*5} )\neq (\frac{5*5}{3*5} -\frac{3*3}{5*3} )

(\frac{9}{15} -\frac{25}{15} )\neq (\frac{25}{15} -\frac{9}{15} )

\frac{-16}{25} \neq \frac{16}{25}

\frac{-16}{25} \neq \frac{16}{25} and therefore we can conclude that (a-b)\neq (b-a).

Similar questions