Math, asked by thegreatking50, 10 months ago

Verify the property: 1 (a×b)×c =a×(b×c).

2 a×(b+c)=(a×b)+(a×c)

By taking a= -2/7 b= -5/6 & c = 1/4

Answers

Answered by EliteSoul
114

Given that to verify the properties :

  • (a × b) × c = a × (b × c)
  • a × (b + c) = (a × b) + (a × c)
  • When, a = -2/7 , b = -5/6 & c = 1/4

\rule{180}{1}

\underline{\underline{\large{\bold\blue{Verifying \: property \: 1 \: : }}}}

\longrightarrow\sf (a \times b)\times c = a \times (b \times c) \\\\\qquad\small\sf {\dag \: Putting \: values \: of \: a,b\: \& \: c } \\\\\longrightarrow\sf \bigg(\dfrac{-2}{7} \times \dfrac{-5}{6} \bigg )\times \dfrac{1}{4} = \dfrac{-2}{7}\times \bigg(\dfrac{-5}{6}\times \dfrac{1}{4} \bigg) \\\\\longrightarrow\sf \bigg(\dfrac{\cancel{10}}{\cancel{42}} \bigg)\times \dfrac{1}{4} = \dfrac{\cancel{-2}}{7}\times \bigg(\dfrac{-5}{\cancel{24}} \bigg)\\\\\longrightarrow\sf \dfrac{5}{21} \times \dfrac{1}{4} = \dfrac{1}{7} \times \dfrac{\cancel{-}5}{\cancel{-}12} \\\\\longrightarrow\large\sf\blue{\dfrac{5}{84} = \dfrac{5}{84}}

Hence,verified!

\rule{200}{1}

\underline{\underline{\large{\bold\red{Verifying \: property \: 2 \: : }}}}

\longrightarrow\sf a\times (b + c) = (a \times b) + (a \times c) \\\\\qquad\small\sf {\dag \: Putting\: values \: of \: a,b \: \& \: c }\\\\\longrightarrow\sf \dfrac{-2}{7} \times \bigg(\dfrac{-5}{6} + \dfrac{1}{4} \bigg) = \bigg(\dfrac{\cancel{-2}}{7} \times \dfrac{-5}{\cancel{6}} \bigg) + \bigg(\dfrac{\cancel{-2}}{7}\times \dfrac{1}{\cancel{4}} \bigg) \\\\\longrightarrow\sf \dfrac{-2}{7}\times \bigg(\dfrac{-20 + 6}{24} \bigg) = \bigg(\dfrac{5}{21} \bigg) + \bigg(\dfrac{-1}{14} \bigg) \\\\\longrightarrow\sf \cancel{\dfrac{-2}{7}} \times \cancel{\dfrac{-14}{24}} = \bigg(\dfrac{20 - 6}{84} \bigg) \\\\\longrightarrow\sf \dfrac{1}{6} = \cancel{ \bigg(\dfrac{14}{84}\bigg)} \\\\\longrightarrow\large\sf\red{\dfrac{1}{6} = \dfrac{1}{6}}

Hence, verified!

\rule{200}{2}

Answered by Anonymous
117

\huge{\boxed{\underline{\overline{\pink{Solution}}}}}

\huge{\boxed{\mathsf{\green{GIVEN}}}}

→ A =  \frac{- 2 }{7} \\

→ B =  \frac{- 5}{6} \\

→ C =  \frac{ 1 }{4} \\

\huge{\boxed{\mathsf{\green{To\: Prove}}}}

1 . ( A × B ) × C = A × ( B × C )

2. A × ( B + C ) = ( A × B ) + ( A × B )

___________________

First Case -

Taking LHS of the first property :-

→ ( A × B ) × C =  ( \frac{-2}{7} \times \frac{-5}{6} ) \times \frac{1}{4} \\

 ( \frac{10}{42}) \times \frac{1}{4} \\

 \frac{5}{42 \times 2 } \\

 \frac{5 }{84} \\

Taking RHS of the first property :-

→ A × ( B × C ) =   \frac{-2}{7} \times (\frac{-5}{6} \times \frac{1}{4} ) \\

 \frac{-2}{7} \times ( \frac{-5}{24} ) \\

 \frac{1}{7} \times \frac{5}{12} \\

 \frac{5}{84} \\

LHS = RHS

Hence proved .

Second case :-

Taking LHS of the second property :-

→ A×(B+C) =  \frac{-2}{7} \times ( \frac{-5}{6} + \frac{1}{4}) \\

 \frac{-2}{7} \times \frac{-10 + 3 }{12} \\

 \frac{-2}{7}\times \frac{-7}{12} \\

 \frac{ 1 }{6} \\

Taking RHS of the second property :-

→ (A × B ) + ( A× C) =  \frac{-2\times-5}{7\times6} + \frac{-2\times1}{7 \times 4} \\

 \frac{5}{21} + \frac{-1}{14} \\

\frac{10 - 3}{42} \\

 \frac{7 }{42} \\

 \frac{1 }{6} \\

LHS = RHS

Hence proved .

Similar questions