Math, asked by ramulupailla, 12 days ago

verify the relation between coefficient of quadratic polynomial 3x2+8x-3 with its zeroes​

Answers

Answered by SwatiK1708
3

Step-by-step explanation:

sum of zeroes= -b/a = -8/3

product of zerows= c/a= -3/

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Given quadratic polynomial is

\rm :\longmapsto\:f(x) =  {3x}^{2} + 8x - 3

Let's first find the zeroes of quadratic polynomial.

\rm :\longmapsto\:f(x) =  {3x}^{2} + 9x - x - 3

\rm :\longmapsto\:f(x) = 3x(x  + 3) - 1(x +  3)

\rm :\longmapsto\:f(x) = (x  + 3)(3x - 1)

So, to get zeroes of f(x),

\rm :\longmapsto\:f(x) = (x  + 3)(3x - 1) = 0

\rm\implies \:x =  - 3 \:  \: or \:  \: x = \dfrac{1}{3}

Let assume that

\rm :\longmapsto\: \alpha  =  - 3

and

\rm :\longmapsto\: \beta  =  - \dfrac{1}{3}

So,

\rm :\longmapsto\:Sum \: of \: zeroes

\rm \:  =  \:  \alpha  +  \beta

\rm \:  =  \:  - 3 + \dfrac{1}{3}

\rm \:  =  \:  \dfrac{ - 9 + 1}{3}

\rm \:  =  \: -  \:   \dfrac{8}{3}

\rm\implies \: \boxed{\tt{ \alpha  +  \beta   =  \:  -  \dfrac{8}{3} }}

And

\rm :\longmapsto\:Product \: of \: zeroes

\rm \:  =  \:  \alpha  \beta

\rm \:  =  \:  - 3 \times \dfrac{1}{3}

\rm \:  =  \:  - 1

\rm\implies \: \boxed{\tt{ \alpha \beta   =  \:   - 1 }}

VERIFICATION

Given quadratic polynomial is

\rm :\longmapsto\:f(x) =  {3x}^{2} + 8x - 3

Now, We know that

\boxed{\red{\sf Sum\ of\ the\ zeroes=\frac{-coefficient\ of\ x}{coefficient\ of\ x^{2}}}}

\rm :\longmapsto\:Sum \: of \: zeroes =  - \dfrac{8}{3}

 \red{\rm\implies \:\boxed{\sf{ Sum \: of \: zeroes =   \alpha  +  \beta \: }}} \\

And, Also

\boxed{\red{\sf Product\ of\ the\ zeroes=\frac{Constant}{coefficient\ of\ x^{2}}}}

\rm :\longmapsto\:Product \: of \: zeroes =  \dfrac{ - 3}{3}  =  - 1

 \red{\rm\implies \:\boxed{\sf{ Product \: of \: zeroes =   \alpha \beta \: }}} \\

HENCE, VERIFIED

Similar questions