Math, asked by Akshaya04manjini12, 9 months ago

Verify the relation between the zeroes and the coefficients of3x^2-5x-8 ​

Answers

Answered by Anonymous
4

\huge\underline\mathbb{\red Q\pink{U}\purple{ES} \blue{T} \orange{IO}\green{N :}}

Verify the relation between the zeroes and the coefficients of 3x² - 5x - 8 = 0

\huge\underline\mathbb{\red S\pink{O}\purple{LU} \blue{T} \orange{IO}\green{N :}}

Given polynomial,

\bf\: ⟹ 3x^{2} - 5x - 8 = 0

\bf\: ⟹ 3x^{2} - 3x + 8x - 8 = 0

\bf\:⟹ 3x(x - 1) + 8(x - 1) = 0

\bf\:⟹(3x + 8)(x - 1) = 0

\bf\:⟹3x + 8 = 0 ; x - 1 = 0

\bf\:⟹3x = 0 - 8 ; x = 0 + 1

\bf\:⟹3x = - 8 ; x = 1

\bf\:⟹x = \frac{- 8}{3} ; x = 1

Hence, the zeroes of the polynomial are -8/3 & 1

Let,

  • α = -8/3
  • ß = 1

\underline{\boxed{\tt{∴ Sum\:of\:the\:zeroes\: = \alpha+\beta}}}

\bf\:⟹  \frac{-8}{3} + 1

\bf\:⟹  \frac{-8 + 3}{3}

\bf\:⟹  \frac{-5}{3}

\underline{\boxed{\tt{∴ Sum\:of\:the\:zeroes\: = \frac{co - efficient\:of\:x}{co - efficient\:of\:x^{2}}}}}</p><p>

\bf\:⟹ \frac{-5}{3}

\underline{\boxed{\tt{∴ Product\:of\:the\:zeroes\: = \alpha\beta}}}

\bf\:⟹ \frac{-8}{3} \times 1

\bf\:⟹ \frac{-8}{3}

\underline{\boxed{\tt{∴ Product\:of\:the\:zeroes\: = \frac{constant\:term}{co - efficient\:of\:x^{2}}}}}

\bf\:⟹ \frac{-8}{3}</p><p>

# HENCE, IT IS VERIFIED...

&lt;marquee&gt; ɪ   ʜᴏᴘᴇ   ɪᴛ   ʜᴇʟᴘs   ʏᴏᴜ... </p><p>

Similar questions