Math, asked by Mister360, 3 months ago

Verify the statement

 \rm(1 + tan19)(1 + tan26) = 2

Answers

Answered by mathdude500
13

Identity Used :-

\boxed{ \sf \:tan(x + y) = \dfrac{tanx + tany}{1 - tanx \: tany}}

 \green{\large\underline{\bf{Solution-}}}

Consider,

\rm :\longmapsto\:(1 + tan19 \degree)(1 + tan26\degree)

\rm \:  =  \:  \: (1 + tan19\degree)(1 + tan(45\degree - 19\degree))

\rm \:  =  \:  \: (1 + tan19\degree)\bigg(1 + \dfrac{tan45\degree - tan19\degree}{1 + tan45\degree \: tan19\degree}\bigg)

\rm \:  =  \:  \: (1 + tan19\degree)\bigg(1 + \dfrac{1- tan19\degree}{1 + \: tan19\degree}\bigg)

\rm \:  =  \:  \: ( \cancel{1 + tan19\degree})\bigg(\dfrac{1 +tan19\degree +  1- tan19\degree}{ \cancel{1 + \: tan19\degree}}\bigg)

\rm \:  =  \:  \: 2

{\boxed{\boxed{\bf{Hence, Proved}}}}

Aliter Method:-

We know,

\rm :\longmapsto\:tan45\degree = tan(26\degree + 19\degree)

\rm :\longmapsto\:1 = \dfrac{tan26\degree + tan19\degree}{1 - tan26\degree \: tan19\degree}

\rm :\longmapsto\:tan26\degree + tan19\degree = 1 - tan26\degree \: tan19\degree

\rm :\longmapsto\:tan26\degree + tan19\degree + tan26\degree \: tan19\degree = 1

On adding 1, both sides, we have

\rm :\longmapsto\:1 + tan26\degree + tan19\degree + tan26\degree \: tan19\degree = 1 + 1

\rm :\longmapsto\:(1 + tan26\degree) + tan19\degree(1 + tan26\degree) = 2

\bf\implies \:(1 + tan26\degree)(1 + tan19\degree) = 2

{\boxed{\boxed{\bf{Hence, Proved}}}}

Additional Information :-

Trigonometry Formulas

sin(−θ) = −sin θ

cos(−θ) = cos θ

tan(−θ) = −tan θ

cosec(−θ) = −cosecθ

sec(−θ) = sec θ

cot(−θ) = −cot θ

Product to Sum Formulas

sin x sin y = 1/2 [cos(x–y) − cos(x+y)]

cos x cos y = 1/2[cos(x–y) + cos(x+y)]

sin x cos y = 1/2[sin(x+y) + sin(x−y)]

cos x sin y = 1/2[sin(x+y) – sin(x−y)]

Sum to Product Formulas

sin x + sin y = 2 sin [(x+y)/2] cos [(x-y)/2]

sin x – sin y = 2 cos [(x+y)/2] sin [(x-y)/2]

cos x + cos y = 2 cos [(x+y)/2] cos [(x-y)/2]

cos x – cos y = -2 sin [(x+y)/2] sin [(x-y)/2]

Sum or Difference of angles

cos (A + B) = cos A cos B – sin A sin B

cos (A – B) = cos A cos B + sin A sin B

sin (A+B) = sin A cos B + cos A sin B

sin (A -B) = sin A cos B – cos A sin B

tan(A+B) = [(tan A + tan B)/(1 – tan A tan B)]

tan(A-B) = [(tan A – tan B)/(1 + tan A tan B)]

cot(A+B) = [(cot A cot B − 1)/(cot B + cot A)]

cot(A-B) = [(cot A cot B + 1)/(cot B – cot A)]

cos(A+B) cos(A–B)=cos^2A–sin^2B=cos^2B–sin^2A

sin(A+B) sin(A–B) = sin^2A–sin^2B=cos^2B–cos^2A

Multiple and Submultiple angles

sin2A = 2sinA cosA = [2tan A /(1+tan²A)]

cos2A = cos²A–sin²A = 1–2sin²A = 2cos²A–1= [(1-tan²A)/(1+tan²A)]

tan 2A = (2 tan A)/(1-tan²A)

Similar questions