Math, asked by sharathv1208, 30 days ago

verify x=2 is the zero polynomial p(x) =4xcube -3xsquare-6x+32​

Answers

Answered by Bartaa
0

Answer:

x = 2 is not a zero of polynomial p(x) = 4x³ - 3x² - 6x + 32.

Step-by-step explanation:

If substituting x = 2 in polynomial p(x) = 4x³ - 3x² - 6x + 32 gives final result = 0.

Then, x = 2 will be zero of the given polynomial p(x) = 4x³ - 3x² - 6x + 32.

p(x) = 4x³ - 3x² - 6x + 32    ——————— (i)

substituting x = 2 in (i)

p(2) = 4 × (2)³ - 3 × (2)² - 6 × (2) + 32

       = 4 × 8 - 3 × 4 - 6 × 2 + 32

       = 32 - 12 - 12 +32

       = 40 ≠ 0

∵ Final result of p(2) ≠ 0

x = 2 is not a zero of polynomial p(x) = 4x³ - 3x² - 6x + 32.

Answered by ManishShah98
7

verify \:  x=2  \: is \:  the \:  zero  \: polynomial \:   \\ p(x) = {4x}^{3}  - {3x}^{2} -6x+32 \\ solution \\ p(x) = {4x}^{3}  - {3x}^{2} -6x+32 \\ p(2) = 4( {2)}^{3}  - 3( {2)}^{2} - 6(2) + 32 \\  = 32 - 12 - 12 + 32 \\  = 64 - 24 \\  = 40   \:  \: \: remainder.

Similar questions