Math, asked by ananyabhargav08, 1 month ago

verify x-y≠ y-x when X = 3/5 and Y = 7/9​

Answers

Answered by Anonymous
10

Given to verify :-

{x- y \neq y -x}

x =  \dfrac{3}{5}

y =  \dfrac{7}{9}

Solution:-

Take LHS

x - y

 \dfrac{3}{5}  -  \dfrac{7}{9}

LCM of 5, 9 is 45

 \dfrac{3\times 9 -7 \times 5 }{45}

 \dfrac{27 - 35}{45}

 \dfrac{ - 8}{45}

L.H.S \:  =   \dfrac{ - 8}{45}

_________________

Take RHS

y - x

 \dfrac{7}{9}  -  \dfrac{3}{5}

LCM of 9,5 is 45

 \dfrac{7  \times 5 - 9 \times 3}{45}

 \dfrac{35 - 27}{ 45}

 \dfrac{8}{45}

R.H.S \:  =  \dfrac{8}{45}

Since ,

 \dfrac{ - 8}{45}  \neq  \dfrac{8}{45}

So,

 \: L.H.S \: \neq R.H.S

 x-y\neq y-x

__________________

Know more :-

Commutative property :-

It only statisfies for multiplication and addition It doesn't satisfies for division and subtraction

If we change the order of number Its value remains same .

For addition ,

a + b = b + a

For multiplication

ab = ba

For subtraction

a - b ≠ b - a

For division

a÷ b ≠ b÷ a

Similar questions