Math, asked by Gitanjalisarangthem0, 4 months ago

verify: x(y+z) = xy+xz by taking x= -3/7, y= 12/13, z= 5/6​

Answers

Answered by BRAINLIESTY
0

Answer:

\frac{-3}7 (\frac{12}{13} + \frac{5}6)      = (\frac{-3}7 * \frac{12}{13}) + (\frac{-3}7 * \frac{5}6)

Step-by-step explanation:

According to question:

x = \frac{-3}7

y = \frac{12}{13}

z = \frac{5}6

Now, we need to prove x(y+z) = xy+xz            

- distributive property of addition over multiplication

Lets form an equation:

\frac{-3}7 (\frac{12}{13} + \frac{5}6)      = (\frac{-3}7 * \frac{12}{13}) + (\frac{-3}7 * \frac{5}6)

And now lets solve!!

LHS (Left Hand Side):

\frac{-3}7 (\frac{12}{13} + \frac{5}6) =  \frac{-3}7 ( \frac{65 + 72}{78})        -combined the fractions

                 =  \frac{-3}7 (\frac{137}{78})            -added them

                 =  \frac{411}{546}

RHS (Right Hand Side):

(\frac{-3}7 * \frac{12}{13}) + (\frac{-3}7 * \frac{5}6) =   \frac{15}{42} + \frac{36}{91}         -multiplied the brackets

                               =   \frac{195 + 216}{546}         -combined the fractions

                               =   \frac{411}{546}

Thus, LHS = RHS, \frac{411}{546} = \frac{411}{546}

______________________________________

Hope it helps

Please mark as brainliest :)

Similar questions