Math, asked by sonam5465, 11 months ago

verify x(y+z)=xy+xz for x= -5/12, y=7/8 , z=-12/3​

Answers

Answered by ashishks1912
6

GIVEN :

The values are x=-\frac{5}{12} , y=\frac{7}{8} and z=-\frac{12}{3}

TO VERIFY :

The Distributive property x(y+z)=xy+xz for the given values  x=-\frac{5}{12} , y=\frac{7}{8} and z=-\frac{12}{3}

SOLUTION :

Given expression is x(y+z)=xy+xz for the given values  x=-\frac{5}{12} , y=\frac{7}{8} and z=-\frac{12}{3}

Now verify x(y+z)=xy+xz for the given values  x=-\frac{5}{12} , y=\frac{7}{8} and z=-\frac{12}{3}

Taking LHS x(y+z)

Substitute the values we get,

x(y+z)=-\frac{5}{12}(\frac{7}{8}+(-\frac{12}{3}))

=-\frac{5}{12}(\frac{7}{8}-4)

=-\frac{5}{12}(\frac{7-32}{8})

=-\frac{5}{12}(\frac{-25}{8})

=\frac{125}{96}

x(y+z)=\frac{125}{96}\hfill (1) = LHS

Taking RHS xy+xz

Substitute the values we get,

xy+xz=-\frac{5}{12}(\frac{7}{8})+(-\frac{5}{12})(-\frac{12}{3})

=-\frac{35}{96}+\frac{5}{3}

=\frac{-105+480}{288}

=\frac{375}{288}

=\frac{125}{96}

xy+xz=\frac{125}{96}\hfill (2) = RHS

Comparing the equations (1) and (2) we get,

(1)=(2)

LHS=RHS

∴ the distributive property x(y+z)=xy+xz for the given values  x=-\frac{5}{12} , y=\frac{7}{8} and z=-\frac{12}{3} is verified.

Answered by DevendraLal
8

Given:

x= -5/12,

y= 7/8,

z= -12/3​.

To verify:

x(y+z)=xy+xz

Solution:

1) To verify the above equation we have to solve the term side by side.

2) LHS

  • x(y+z)

Putting the values of x, y and z.

  • -5/12[7/8+(-12/3)]
  • -5/12[7/8 - 4]
  • -5/12[(7 - 32)/8]
  • (-5/12)(-25/8)
  • 125/96

3) RHS

  • xy+xz
  • (-5/12)(7/8) + (-5/12)(-12/3)
  • -35/96 + 5/3
  • (-35 + 160)/96
  • 125/96

LHS = RHS

Hence verified.

-

Similar questions