Math, asked by sahus529992, 8 months ago

Verify:x3+y= (x+y)(x2+xy+y?)​

Answers

Answered by Saby123
2

To verify :

x³ + y³ = ( x + y )( x² - xy + y² )

Solution :

The term on the RHS is :

=> ( x + y )( x² - xy + y² )

=> x ( x² - xy + y² ) + y ( x² - xy + y² )

=> x³ - x²y + xy² + x²y - xy² + y³

The common terms get cancelled leaving with -

=> x³ + y³ .

Therefore LHS = RHS

Hence Verified

_____________________________

Additional Information :

(a + b)² = a² + 2ab + b²

(a + b)² = (a - b)² + 4ab

(a - b)² = a² - 2ab + b²

(a - b)² = (a + b)² - 4ab

a² + b² = (a + b)² - 2ab

a² + b² = (a - b)² + 2ab

2 (a² + b²) = (a + b)² + (a - b)²

4ab = (a + b)² - (a - b)²

ab = {(a + b)/2}² - {(a-b)/2}²

(a + b + c)² = a² + b² + c² + 2(ab + bc + ca)

(a + b)³ = a³ + 3a²b + 3ab² b³

(a + b)³ = a³ + b³ + 3ab(a + b)

(a - b)³ = a³ - 3a²b + 3ab² - b³

a³ + b³ = (a + b)( a² - ab + b² )

a³ + b³ = (a + b)³ - 3ab( a + b)

a³ - b³ = (a - b)( a² + ab + b²)

a³ - b³ = (a - b)³ + 3ab ( a - b )

__________________________________

Answered by BrainlyHero420
95

Answer:

Correct Question :-

\mapsto Verify : + = (x + y) ( - xy + )

Solution :-

\dashrightarrow L.H.S : +

▪️We know that,

\green\bigstar (x + y)³ = + + 3xy (x + y)

So, + = (x + y)³ - 3xy (x + y)

\implies (x + y)³ - 3xy (x + y)

\implies (x + y) [ (x + y)² - 3xy ]

▪️By using the formula,

\red\bigstar (a + b)² = + + 2ab

\implies (x + y) [ (x² + y² + 2xy) - 3xy ]

\implies (x + y) (x² + y² - xy)

\implies (x + y) ( - xy + )

\dashrightarrow R H.S

\leadsto \boxed{\bold{\large{Proved}}}

_______________________________

Similar questions