Math, asked by aryanmann884, 1 year ago

Vertices od triangle are (-2,0) (2,3) (1,-3) is equilateral, scalene or isosceles also find area of triangle

Answers

Answered by saddambot6
0

Let, A (-2,0), B (2,3), C (1,-3)

AB=sqrt ((-2-2)^2+(0-3)^2)=5

BC=sqrt ((2-1)^2+(3+3)^2)=6.08

CA=sqrt ((1+2)^2+(-3-0)^2)=4. 24

So, triangle ABC is a scalene

Now, half Perimeter of ABC is s= (5+6. 08+4. 24)/2=7. 66

Then, area of ABC=sqrt. ((((s*(s-a).*(s-b)*(s-c))))=10. 50

Answered by VelvetBlush
5

Let A (-2,0) , B (2,3) and C (1,-3) be the vertices of ∆ABC,Then,

\sf{AB= \sqrt{ {(2 + 2)}^{2}  +   {(3 - 0)}^{2}  } =  \sqrt{16 + 9}  =  \sqrt{25}  = 5}

\sf{BC= \sqrt{ {(1 - 2)}^{2}  +  {( - 3 - 3)}^{2} }  =  \sqrt{1 +  {( - 6)}^{2} } =  \sqrt{37}  }

\sf{AC =  \sqrt{ {(1 + 2)}^{2} +  {( - 3 - 0)}^{2}  }  =  \sqrt{9 + 9}  =  \sqrt{18}  = 3 \sqrt{2} }

Clearly, AB ≠ BC ≠ AC,Hence, ∆ABC is a scalene triangle.

Similar questions