Math, asked by KabeerRRatnakar, 1 year ago

very difficult for me
please answer

Attachments:

Answers

Answered by siddhartharao77
1
Given LHS = \sqrt{ \frac{cosecx - 1}{cosex + 1} }

On rationalizing, we get

 \sqrt{ \frac{(cosecx - 1)(cosecx-1)}{(cosecx+1)(cosecx-1)} }

 \sqrt{ \frac{(cosecx-1)^2}{cosec^2x - 1} }

 \sqrt{ \frac{(cosecx-1)^2}{cot^2x} }

 \frac{cosecx - 1}{cotx}

 \frac{cosecx}{cotx} - \frac{1}{cotx}

 \frac{ \frac{1}{sinx}}{ \frac{cosx}{sinx} } - tanx

 \frac{1}{cosx} - tan x

sec x - tan x

Divide the numerator & denominator with (sec x + tan x)

 \frac{(secx-tanx)(secx+tanx)}{secx+tanx}

 \frac{(sec^2x - tan^2x)}{secx+tanx}

We know that sec^2x - tan^2x = 1.

 \frac{1}{secx + tanx}


LHS = RHS.


Hope this helps!
Answered by mukul1231
0
Maybe this one is the simplest one.
Attachments:
Similar questions