Math, asked by ac6918998, 2 months ago

very fast answer
ok ok ok ok ​

Attachments:

Answers

Answered by gayathriandsruthifun
1

Answer:

 \frac{3}{2}  {x}^{2} y +  \frac{4}{5} y -  \frac{1}{3}  {x}^{2} yz - ( \frac{12}{5}  {x}^{2} yz  \\ -  \frac{3}{5} xyz +  \frac{2}{3}  {x}^{2} y) \\  \frac{3}{2}  {x}^{2} y +  \frac{4}{5} y -  \frac{1}{3}  {x}^{2} yz -  \frac{12}{5}  {x}^{2} yz  \\ +  \frac{3}{5} xyz -  \frac{2}{3}  {x}^{2} y \\ ( \frac{1}{3}  {x}^{2} yz -  \frac{12}{5}  {x}^{2} yz) +  \frac{3}{5} xyz +  \\  (\frac{3}{2}  {x}^{2} y -  \frac{2}{3}  {x}^{2} y) \\  \frac{1}{3}  \times  \frac{5}{5}  =  \frac{5}{15}  \\  \frac{12}{5}  \times  \frac{3}{3}  =  \frac{36}{15}  \\  \frac{3}{2}  \times  \frac{3}{3}  =  \frac{9}{6}  \\  \frac{2}{3}  \times  \frac{2}{2}  =  \frac{4}{6}  \\ ( \frac{5}{15}  {x}^{2} yz -  \frac{36}{15}  {x}^{2} yz) +  \frac{3}{5} xyz \\  + ( \frac{9}{6}  {x}^{2} y -  \frac{4}{6}  {x}^{2} y) \\  \frac{ - 31}{15}  {x}^{2} yz +  \frac{3}{5} xyz + ( \frac{5}{6}  {x}^{2} y) \\  \frac{ - 31}{15}  {x}^{2} yz +  \frac{3}{5} xyz +\frac{5}{6}  {x}^{2} y

Answered by MERCTROOPER
4

Step-by-step explanation:

If I had to live in a tree top house, I would live in the freshness of nature. I would also get to enjoy the melodious warbling of the birds living in the trees. ... The greatest challenge would climbing up and down the tree.

Similar questions