Math, asked by mamtadwivedi41, 11 months ago

Very important please answer ​

Attachments:

Answers

Answered by Anonymous
1

\boxed{\huge{\red{Explaination}}}

__________________________

\huge{\blue{\underline{Given:}}}

x  +   \frac{1}{x}  = 2 \\  {x}^{2}   +  1 = 2x \\  {x}^{2}  - 2x  +  1 = 0 \\  {x}^{2}   - x - x  + 1 = 0 \\ x(x - 1) - 1(x - 1) = 0 \\ x = 1 \\

\huge{\underline{To\:find:}}

 =  {x}^{4}  +  \frac{1}{ {x}^{4} }  \\ = 1 +  \frac{1}{1}   \\  = 1 + 1 \\  = 2

_________________________

\boxed{\huge{\red{Hope\:it\:helps}}}

\boxed{\huge{\green{Mark\:as\:Brainiliest}}}

\boxed{\huge{\blue{@Devanshu1973}}}

Answered by johnkumarrr4
0

\left ( x^{4} +1/x^{4}\right )=34

Step-by-step explanation:

Given,

\left ( x-1/x \right )=2

\left ( x^{4}+1/x^{4} \right )=?

Solution,

\left ( x-1/x \right )=2

Squaring both side

\left ( x-1/x \right )^{2}=2^{2}

x^{2}+1/x^{2}-2\times x/x=4         \left ( \left ( a-b \right )^{2} =a^{2}+b^{2}-2ab\right )

x^{2}+1/x^{2}=4+2=6             (1)

Squaring equation 1 both side

\left ( x^{2}+1/x^{2} \right )^{2}=6^{2}                      

x^{4}+1/x^{4}+2\times x^{2}/x^{2}=36        \left ( \left ( a+b \right )^{2} =a^{2}+b^{2}+2ab\right )

x^{4}+1/x^{4}+2=36

\left ( x^{4}+1/x^{4} \right )=36-2=34

\left ( x^{4} +1/x^{4}\right )=34  

Similar questions