CBSE BOARD X, asked by kumargirishsingh0303, 2 days ago

very important question solve.
Solve the equation:
1 + 4 + 7 + 10 + ... + x = 287​

Answers

Answered by mathdude500
8

\large\underline{\sf{Solution-}}

Given series is

\rm \: 1 + 4 + 7 + 10 + ... + x = 287 \\

Since,

\rm \:  \:  \:  \:  \: 4 - 1 = 3 \\

\rm \:  \:  \:  \:  \: 7 - 4 = 3 \\

\rm \:  \:  \:  \:  \: 10 - 7 = 3 \\

\rm\implies \:1 + 4 + 7 + 10 + ...  \: forms \: an \: AP \: series \\

whom

  • First term, a = 1

  • Common difference, d = 3

Now, given that

\rm \: 1 + 4 + 7 + 10 + ... + x = 287 \\

Let assume that number of terms in the series be n.

It means, we have

\rm \:  \:  \:  \:  \:  \: a_1 = 1 \\

\rm \:  \:  \:  \:  \:  \: a_n = x \\

\rm \:  \:  \:  \:  \:  \: S_n = 287 \\

\rm \:  \:  \:  \:  \:  \: d = 3 \\

Wᴇ ᴋɴᴏᴡ ᴛʜᴀᴛ,

↝ Sum of n  terms of an arithmetic sequence is,

\begin{gathered}\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\green{S_n\:=\dfrac{n}{2} \bigg(2 \:a\:+\:(n\:-\:1)\:d \bigg)}}}}}} \\ \end{gathered}

Wʜᴇʀᴇ,

  • Sₙ is the sum of n terms of AP.

  • a is the first term of the sequence.

  • n is the no. of terms.

  • d is the common difference.

So, on substituting the values, we get

\rm \: \dfrac{n}{2} \bigg(2 \times 1 + (n - 1) \times 3\bigg)  = 287 \\

\rm \: \dfrac{n}{2} \bigg(2+ 3n - 3\bigg)  = 287 \\

\rm \: \dfrac{n}{2} \bigg(3n - 1\bigg)  = 287 \\

\rm \:  {3n}^{2} - n = 574 \\

\rm \:  {3n}^{2} - n - 574 = 0 \\

\rm \:  {3n}^{2} + 41n - 42n - 574 = 0 \\

\rm \: n(3n + 41) - 14(3n + 41) = 0 \\

\rm \: (3n + 41)(n  -  14) = 0 \\

\rm\implies \:n \:  =  \: 14 \:  \: or \:  \: n =   \: -  \:  \frac{41}{3}  \:  \{rejected \}\\

Now,

Wᴇ ᴋɴᴏᴡ ᴛʜᴀᴛ,

↝ nᵗʰ term of an arithmetic sequence is,

\begin{gathered}\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\green{a_n\:=\:a\:+\:(n\:-\:1)\:d}}}}}} \\ \end{gathered}

Wʜᴇʀᴇ,

  • aₙ is the nᵗʰ term.

  • a is the first term of the progression.

  • n is the no. of terms.

  • d is the common difference.

As, given that

\rm \: a_n = x \\

means,

 \rm \: a_{14} = x \\

 \rm \: a + 13d = x \\

 \rm \: 1 + 13 \times 3 = x \\

 \rm \: 1 + 39 = x \\

\bf\implies \:x = 40 \\

Answered by cutegirl3786
0

Answer:

Here,given = 1

d = 4 −1 = 3

And , sn =287

Now,

sn=2n(2a+(n−1)d)

⇒287=2n(2×1+(n−1)3)

⇒287=2n(2+3n−3)

⇒574=n(3n−1)

⇒574=3n2−n⇒3n2−n−574=0

on solving the quadratic equaton using formula n=2a−b±b2−4ac

We get n=14 & 3−41[does not exist] so, n=14

Now,

sn=2n(a+1)

⇒287=214(1+x)

⇒574=14(1+x)

⇒(1+x)=14574⇒1+x=41

⇒x=41−1

∴x=40

x=40 is the solution.

Similar questions