Math, asked by YJJBEAST, 4 months ago

very short anser type question
find the value of cos² 65° + cos² 25°

Answers

Answered by laaibah1477
2

Answer:

1

Step-by-step explanation:

cos² 65° + cos² 25°

= cos² 65° + sin²(90°-25°)

= cos² 65° + sin² 65°

= 1 [ sin² ∅ + cos²∅ = 1 ]

Answered by LilBabe
113

Question

Very short anser type question

Find the value of cos² 65° + cos² 25°.

Answer

cos² 65° + cos² 25°

 \mathfrak{cos^{2}65 + cos {}^{2}25 }

 \nrightarrow\mathfrak{cos^{2}65° + cos {}^{2}(90° - 65°) }

  \nrightarrow\mathfrak{cos^{2}65° + sin {}^{2} 65° }

\nrightarrow\mathfrak{1[cos^{2}\theta + sin {}^{2}\theta]}

\nrightarrow\mathfrak{1×1}

\nrightarrow\mathfrak{1}

Some important formulas

Trigometric Identities

Sin²A + Cos²A = 1

1 +Tan²A = Sec²A

1+ Cot²A = Cosec²A

Complementary Angle

Sin \theta = Cos ( 90 - \theta)

Cos \theta = Sin ( 90 - \theta)

Tan \theta = Cot ( 90 - \theta)

Cosec \theta = Sec (90 - \theta)

Sec \theta = Cosec (90 - \theta )

Cot \theta = Tan (90- \theta )

Similar questions