Math, asked by AryanUditMishra, 5 months ago

Very short answer type questions☆

1. The distance of the point P(2,3) from x-axis is
2. The midpoint of the line segment joining A(3,-7) and (5,-5)
3. The area of a triangle with vertices P(3,0) Q(7,0) and R(8,4) is
_____
◇don't spam up guys!◇​

Answers

Answered by ItsBrainest
6

1. The distance between point (2, 3) & x-axis can be determine by assuming a point (2, 0) in x-axis.

Now distance between A & B = P

(X2 - X1)² + (Y2 -Y1)²

P = (2 - 2)² + (3 - 0)²

P = 3 unit.

3. The area of a PQR with verticles.

P ( X1, Y1) = (3, 0)

Q ( X2, Y2) = (7, 0)

R ( X3, Y3) = (8, 4)

ABC = ½ [ X1 (y2 - y3) + X2 (y3 - y1) + X3 (y1 - y2) ]

= ½ {3 (0 - 4) + 7 (4 - 0) + 8 (0-0) } sq.units

= 8 sq.units

Hope it's helps you.

Answered by Anonymous
48

\underline{\:\large{\sf Answer \: \textit{1} :}}

As we know that,

\star\;{\boxed{\sf{\purple{Distance\;formula = \sqrt{( x_2- x_1)^2 + (y_2 - y_1)^2}}}}}\\ \\

:\implies\sf \sqrt{ {(2 - 2)}^{2}  + (0 - 3) {}^{2} }\\ \\

:\implies\sf  \sqrt{0 + 9} \\ \\

:\implies{\boxed{\frak{\pink{3\;units}}}}\;\bigstar\\ \\

⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━━━

\underline{\:\large{\sf Answer \: \textit{2} :}}

As we know that,

\star\;{\boxed{\sf{\purple{Mid-point\;formula =  \bigg( \dfrac {x_1+x_2}{2}, \dfrac{y_1+y_2}{2} \bigg) }}}}\\ \\

:\implies\sf \bigg( \dfrac {3+5}{2}, \dfrac{-7-5}{2} \bigg)\\ \\

:\implies{\boxed{\frak{\pink{(4,-6)\;}}}}\;\bigstar\\ \\

⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━━━

\underline{\:\large{\sf Answer \: \textit{3} :}}

⠀⠀⠀⠀⠀⠀⠀

\star\;{\boxed{\sf{\purple{Area_{ \triangle} = \dfrac{1}{2} \bigg[ x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2) \bigg]}}}}\\ \\

Therefore,

:\implies\sf \dfrac{1}{2} \bigg[ 3(0-4)+7(4-0)+8(0-0) \bigg]\\ \\

⠀⠀⠀

:\implies\sf \dfrac{1}{2} \bigg[ -12+8  \bigg]\\ \\

:\implies{\boxed{\frak{\pink{8\;sq.\;units}}}}\;\bigstar\\ \\

⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━━━

Similar questions