Math, asked by Anonymous, 11 months ago

very urgent ..... fast answer​

Attachments:

Answers

Answered by Anonymous
6

\bold\red{\underline{\underline{Answer:}}}

\bold{b) \ 1}

\bold\orange{Given:}

\bold{=>p(x)=x^{2}-2\sqrt2x+1}

\bold\pink{To \ find:}

\bold{=>p(2\sqrt2)}

\bold\green{\underline{\underline{Solution}}}

\bold{=>p(x)=x^{2}-2\sqrt2x+1}

\bold{=>p(2\sqrt2)=(2\sqrt2)^{2}-2\sqrt2×2\sqrt2+1}

\bold{=>p(2\sqrt2)=8-8+1}

\bold{=>p(2\sqrt2)=1}

\bold\purple{\tt{\therefore{p(2\sqrt2)=1}}}

Answered by ItzArchimedes
67

 \underline{ \underline \red{{ \bf{ANSWER}}}}

Given

  • p(x) = x² - 2√2x + 1

  • p(2√2) = ?

If p(x) = x² - 2√2x + 1

Then p(2√2) = ?

Substituting x = 2√2 in p(x)

 \small{\to \rm{p(2 \sqrt{2} ) =  {(2 \sqrt{2} )}^{2} - (2 \sqrt{2}  )(2 \sqrt{2} ) + 1}} \\  \small \to \rm{p(2 \sqrt{2} ) =  \cancel{ {(2 \sqrt{2} )}^{2}  } -  \cancel{ {(2 \sqrt{2} )}^{2}}  + 1} \\  \\  \small \to \bf{p(2 \sqrt{2} ) = 1}

Hence, p(22) = 1

\therefore Option B is your answer

Similar questions