Math, asked by palsabita1957, 2 months ago


Very urgent !

▪ wanted answers with step - by - step - explanation ✔
▪ no irrelevant answers / copied answers ❌
▪ those who can't understand they no need to mention in the answer slot otherwise account will be reported ⚠​

Attachments:

Answers

Answered by LivetoLearn143
9

\large\underline{\sf{Solution-}}

Properties of Logarithmic :-

\rm :\longmapsto\: log(xy)  = logx + logy

\rm :\longmapsto\:log\bigg(\dfrac{x}{y} \bigg)  = logx - logy

\rm :\longmapsto\: log( {x}^{y} ) = y \: logx

Part - (i)

\rm :\longmapsto\:PV = K

Taking log on both sides,

\rm :\longmapsto\:log(PV) =log K

\rm :\longmapsto\:logP + logV=log K

Part - (ii)

\rm :\longmapsto\:V = \dfrac{\pi \: Pr}{8  \eta \: l}

Taking log on both sides,

\rm :\longmapsto\: \: logV = log \bigg(\dfrac{\pi \: Pr}{8  \eta \: l} \bigg)

\rm :\longmapsto\:logV = log\pi + logP + logr - log8 - log \eta - logl

\rm :\longmapsto\:logV = log\pi + logP + logr - log {2}^{3}  - log \eta - logl

\rm :\longmapsto\:logV = log\pi + logP + logr - 3log {2} - log \eta - logl

Part - (iii)

\rm :\longmapsto\:h = \dfrac{2T}{r \rho \: g}

Taking log on both sides,

\rm :\longmapsto\:logh = log \bigg(\dfrac{2T}{r \rho \: g} \bigg)

\rm :\longmapsto\:logh = log2 + logT - logr - log \rho \:  - logg

Part - (iv)

\rm :\longmapsto\:T = 2\pi \sqrt{\dfrac{I}{ \alpha } }

Taking log on both sides,

\rm :\longmapsto\:logT = log(2\pi \sqrt{\dfrac{I}{ \alpha } } )

\rm :\longmapsto\:logT = log2\pi \:  + log \sqrt{\dfrac{I}{ \alpha } }

\rm :\longmapsto\:logT = log2 + log\pi \:  + log  \bigg(\dfrac{I}{ \alpha } \bigg)^{ \dfrac{1}{2} }

\rm :\longmapsto\:logT = log2 + log\pi \:  +\dfrac{1}{2}  log  \bigg(\dfrac{I}{ \alpha } \bigg)

\rm :\longmapsto\:logT = log2 + log\pi \:  +\dfrac{1}{2} \bigg(logI - log\alpha \bigg)

Answered by aalisoha43
0

Answer:

Hello palsabita

How are you

Similar questions