Math, asked by naveenranjitha844, 4 months ago

(vi) 3 (y + 3) + 4 = 28
y - 2​

Answers

Answered by Anonymous
89

Question

  • 3(y + 3) + 4 = 28y - 2

Solution

\sf\pink{⟶} In this question, we have to find the value of y.

\tt:\implies\: \: \: \: \: \: \: \: {3y + 9 + 4 = 28y - 2}

\tt:\implies\: \: \: \: \: \: \: \: {3y + 13 = 28y - 2}

\tt:\implies\: \: \: \: \: \: \: \: {28y - 3y = 13 + 2}

\tt:\implies\: \: \: \: \: \: \: \: {25y = 15}

\tt:\implies\: \: \: \: \: \: \: \: {y = \cancel{\dfrac{15}{25}}}

\tt:\implies\: \: \: \: \: \: \: \: {y = \dfrac{3}{5}}

  • Value of y is \bold{\dfrac{3}{5}}

━━━━━━━━━━━━━━━━━━━━━━

Answered by Anonymous
10

Step-by-step explanation:

1.distribute \\  \\ 3(y + 3) +  = 28y - 2 \\ 3y + 9 + 4 = 28y - 2 \\  \\ 2.add \: the \: numbers \\  \\ 3y + 9 +  = 28y - 2 \\ 3y + 13 = 28y - 2 \\  \\ 3.simplify \\  \\ subtract \: the \: numbers \\  \\ 3y + 13 - 13 = 28y - 2 - 13 \\ 3y = 28y - 2 - 13 \\  \\ subtract \: the \: numbers \\  \\ 3y = 28y - 2 - 13 \\ 3y = 28y - 15 \\ 3y = 28y - 15 \\  \\ subtract \: 28y \: from \:  \: both \: sides \: of \: the \: equation \:  \\  \\ 3y = 28y - 15 \\ 3y - 28y = 28y - 15 - 28y \\  \\ simplify \\   \\ combine \: like \: terms \:  \\  \\ 3y - 28y = 28y - 15 - 28y \\  - 25y = 28y - 15 - 28y \\  \\ combine \: like \: terms \:  \\  \\  - 25y = 28y - 15 - 28y \\  - 25y =  - 15 \\  - 25y =  - 15 \\  \\ divide \: both \: sides \: of \: the \: equation \: by \: the \: same \: term \:  \\  \\  - 25y =  - 15 \\   \frac{ - 25y}{ - 25}  =  \frac{ - 15}{ - 25}  \\  \\ simplify \\  \\ cancel \: terms \: that \: are \: in \: both \: the \: numerator \: and \: denominator \\  \\  \frac{ - 25y}{ - 25 }  =  \frac{ - 15}{ - 25}  \\ y =  \frac{ - 15}{ - 25}  \\  \\ divide \: the \: numbers \:  \\  \\ y =  \frac{ - 15}{ - 25}   \\ y =  \frac{3}{5}  \\ y =  \frac{3}{5}  \: solution \: is \: a \:  =   y =  \frac{3}{5}

Similar questions