Math, asked by kelagerisagar, 4 months ago

(vi)
 \frac{3x}{2}    -   \frac{5y}{3 }  =  - 2 \:  \: and \:  \frac{x}{3}  +  \frac{y}{2}  =  \frac{13}{6}
solve using substitution method​


kelagerisagar: hlo plz frends fast solve it for me

Answers

Answered by Flaunt
192

\sf\huge\bold{Solution}

\sf \longmapsto \dfrac{3x}{2}  -  \dfrac{5y}{3}  =  - 2

\sf \longmapsto \dfrac{9x - 10y}{6}  =  - 2

\sf \longmapsto 9x - 10y =  - 12

 \sf \boxed{x =  \dfrac{ - 12 + 10y}{9}}

Now, substitute X's value into another equation:

\sf \longmapsto \dfrac{x}{3}  +  \dfrac{y}{2}  =  \dfrac{13}{6}

Now, putting X's value :

\sf \longmapsto \dfrac{ - 12 + 10y}{9}  +  \dfrac{y}{2}  =  \frac{13}{6}

\sf \longmapsto \dfrac{2( - 12 + 10y) + 9y}{18}  =  \dfrac{13}{6}

\sf \longmapsto \dfrac{ - 24 + 20y + 9y}{18}  =  \dfrac{13}{6}

\sf \longmapsto6( - 24 + 29y) = 13 \times 18

\sf \longmapsto - 144 + 174y = 234

\sf \longmapsto174y = 234 + 144

\sf \longmapsto174y = 378

\sf \boxed{ y =  \dfrac{378}{174}  =  \dfrac{189}{87}  =  \dfrac{63}{29} }

Now,put y's value into first Equation again to find X's value :

\sf \longmapsto \boxed{ x =  \dfrac{ - 12 + 10y}{9}}

\sf \longmapsto \: x =  \dfrac{ - 12 + 10 \times  \dfrac{63}{29} }{9}

\sf \longmapsto \: x =  \dfrac{ - 348 + 630}{ \dfrac{29}{9} }

\sf \boxed{ x =  \dfrac{282}{261}  =  \dfrac{94}{87}}

Check:-

\sf \longmapsto \dfrac{3x}{2}  -  \dfrac{5y}{3}  =  - 2

\sf \longmapsto \dfrac{3 \times  \dfrac{94}{87} }{2}  -  \dfrac{5 \times  \dfrac{63}{29} }{3}

\sf \longmapsto \dfrac{282 - 2(315)}{174}

\sf \longmapsto \dfrac{282 - 630}{174}

\sf \longmapsto \dfrac{ - 348}{174}  =  - 2


Itzcupkae: Awesome
Flaunt: Thanks
Anonymous: nice :)
Flaunt: THANKS:)
Answered by Anonymous
17

\huge{\underline{\red{\mathfrak{♡ANSWER♡}}}}

hope his answer help u

Attachments:
Similar questions