Math, asked by sureshkoilapudi2000, 1 month ago

view the picture help me all​

Attachments:

Answers

Answered by Anonymous
52

{ \huge{{ \bold{ \underline{Solution : - }}}}}

Z\:  = 1 \\  \\ let \: Z\:  =  \frac{1 + 7i}{(2 - i) ^{2} } \\  \\ { \large{Using}} \: (a - b)^{2}  =  {a}^{2}  +  {b}^{2}  - 2ab \\  \\   \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  =  \frac{1 + 7i}{2 ^{2} + (i)^{2} - 2 \times 2 \times i }

 \large{Putting} \:  {i}^{2}  =  - 1  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  =  \frac{1 + 7i}{4 + ( - 1) - 4i}   \\ \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:   = \frac{1 + 7i}{4 - 1 - 4i}  \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:   = \frac{1 + 7i}{4 - 1 - 4i}    \\ \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   =  \frac{1 + 7i}{3 - 4i}

Rationalizing The Same

  =  \frac{1 + 7i}{3 - 4i}  \times  \frac{3 + 4i}{3  + 4i}  \\  \\  =  \frac{(1 + 7i) \:  \: (3 + 4i)}{(3 - 4i) \:  \: (3 - 4i)}  \\  \\  =  \frac{1(3 + 4i) + 7i(3 + 4i)}{(3 - 4i) \:  \: (3 + 4i)}

 =  \frac{3 + 4i + 21i + 28i^{2} }{(3 - 4i) \:  \: (3 + 4i)}  \\  \\  =  \frac{3 + 25i + 28i^{2} }{(3 - 4i) \:  \: (3 + 4i)}  \\  \\ Using \: (a - b) \: (a + b) \:  =  \:  {a}^{2}  -  {b}^{2}

 =  \frac{3 + 25i + 28i^{2} }{(3)^{2} - (4i)^{2}  }  \\  \\  =  \frac{3 + 25i + 28i ^{2} }{9 - 16i^{2} }  \\  \\ Putting \:  {i}^{2}   \:  =  \: 1

 =  \frac{3 + 25i + 28( - 1)}{9 - 16( - 1)} \\  \\  =  \frac{3 + 25i - 28}{9 + 16}   \\  \\  =  \frac{3 - 28 + 25i}{25}

 =  \frac{ - 25 + 25i}{25}  \\  \\  =  \frac{25( - 1 +  i)}{25}

 z  \:  =  \:  - 1 + i

Hence, Z = -1 + I

Let polar form be

  - 1 + i \:  = r \:  \cosθ  \:  + i \: r \: \sinθ

comparing \: real \: part \: │comparing \: imaginary \: part  \\  │ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\ - 1 = r \:  \cosθ│1 = r \:  \sinθ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\ Squaring \: Both \: Sides \: │ \: Squaring \: Both \: Sides \:  \:  \:  \:  \:  \:  \:  \:  \:  \\ ( - 1) ^{2}  = ( \: r \:  \cosθ)^{2}│ (1)^{2}  = (r \:  \sinθ)^{2}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

Adding (3 ) and ( 4 )

1 + 1 =  {r}^{2}  \cos^{2} θ  \:  +  {r}^{2}  \:  \sin^{2} θ \\  \:  \:  \:  \: 2 =  {r}^{2} ( \cos^{2} θ  \:  +  \sin^{2} θ)  \\ 2 =  {r}^{2}  \times 1 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\ 2 =  {r}^{2}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \sqrt{2}  = r \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\ r =  \sqrt{2}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

Hence, \:  \cosθ \:  =   \frac{ - 1}{ \sqrt{2} }  \:  \: and \:  \sinθ \:  =  \frac{ 1}{ \sqrt{2} }

Since ,

Sinθ is positive and cosθ is negative .

= Argument = 180° - 45°

= 135°

 = 135° \times  \frac{\pi}{180°}   \\ \\  =  \frac{3\pi}{4}   \\  \\  \large{ \bold{ \pink{Hence \: ,argument \: of \: z \:  =  \frac{3\pi}{4}}}}

Similar questions