(vii) cos (120 ° + A) COS (120° - A) + cos (120° + A) cos A+ cos A (cos 120º - A) + 3/4 = 0
Answers
Answered by
1
ANSWER
We have,
cos
3
x+cos
3
(120−x)+cos
3
(120+x)
Now, Using
cos3x=4cos
3
x−3cosx
cos
3
x=
4
cos3x+3cosx
Such that,
4
cos3x+3cosx
+
4
cos(360−3x)+3cos(120−x)
+
4
cos(360+3x)+3cos(120+x)
=
4
1
[cos3x+3cosx+cos(360−3x)+3cos(120−x)+cos(360+3x)+3cos(120+x)]
=
4
3
[cos3x+cosx+cos(120−x)+cos(120+x)]
=
4
3
[2cos2xcosx+2cos120cosx]
=
4
3
[2cos2xcosx+2(−
2
1
)cosx]
=
4
3
[cos3+cosx−cosx]
=
4
3
cos3x
Minimum value of cos3x=−1
So, minimum value of cos
3
x+cos
3
(120−x)+cos
3
(120+x)=
4
3
×−1=
4
−3
Hence, this is the answer.
Hope it helps you please add me to brainlist
Similar questions