(vii) cos 2e-cose = sino - sin20
Answers
Answer:
Step-by-step explanation:
3.1 lexz voyksdu (Overview)
3.1.1 'kCn ‘trigonometry’ (f=kdks.kferh;) ;wukuh 'kCn ^fVªxksu*a (trigon) vkSj ^ehVªksu* (metron)
ls O;qRifÙk gqvk gS] ftldk vFkZ ,d f=kHkqt dh Hkqtkvksa dk ekiuk gSA ,d dks.k ,d fuf'pr js[kk
osQ lkis{k ifjHkze.k djus okyh fdlh js[kk osQ ?kw.kZu dh ek=kk gksrh gSA ;fn ;g ?kw.kZu nf{k.kkorZ
fn'kk esa gS rks dks.k ½.kkRed gksrk gS rFkk dks.k èkukRed gksrk gS] ;fn ?kw.kZu okekorZ fn'kk esa gksrk
gSA izk;%] ge dks.kksa dks ekius osQ fy,] nks izdkj dh i¼fr;k¡] vFkkZr~ (i) "kksf"Vd i¼fr
(sexagesinal system) vkSj (ii) o`Ùkh; i¼fr viukrs gSaA
"kkSf"Vd i¼fr esa] dks.k osQ ekiu dh bdkbZ va'k ;k fMxzh (Degree) gSA ;fn izkjafHkd Hkqtk
ls vafre Hkqtk rd dk ?kw.kZu ,d ifjHkze.k dk 1
360 ok¡ Hkkx gks] rks dks.k osQ eki dks 1° dgk tkrk
gSA bl i¼fr esa] oxhZdj.k fuEufyf[kr izdkj gSaµ
1° = 60′
1′ = 60″
ekiu dh o`Ùkh; i¼fr esa] ekiu dh bdkbZ jsfM;u (radian) gSA ,d jsfM;u og dks.k gS tks
fdlh o`Ùk dh f=kT;k osQ cjkcj yackbZ dk pki ml o`Ùk osQ osaQnz ij varfjr djrk gSA f=kT;k r okys
,d o`Ùk osQ pki PQ dh yackbZ s = rθ nh tkrh gS] tgk¡ θ jsfM;uksa esa ekik x;k og dks.k gS] tks
pki PQ o`Ùk osQ osaQnz ij varfjr djrk gSA
3.1.2 fMxzh vkSj jsfM;u esa lacaèk
fdlh o`Ùk dh ifjfèk dk mlosQ O;kl osQ lkFk lnSo ,d vpj vuqikr gksrk gSA ;g vpj vuqikr
π ls O;Dr dh tkus okyh ,d la[;k gS ftldk eku lHkh O;kogkfjd iz;kstu osQ fy, yxHkx 22
7
fy;k tkrk gSA fMxzh vkSj jsfM;u ekiksa osQ chp lacaèk fuEufyf[kr gSaµ
2 ledks.k = 180° = π jsfM;u
1 jsfM;u = 180°
π
= 57°16′ (yxHkx)
1° = 180
π jsfM;u = 0.01746 jsfM;u (yxHkx)
vè;k; 3
f=kdks.kferh; iQyu
20/04/2018
f=kdks.kferh; iQyu 35
3.1.3 f=kdks.kferh; iQyu
U;wu dks.kksa osQ fy,] f=kdks.kferh; vuqikr dks] fdlh ledks.k f=kHkqt dh Hkqtkvksa osQ vuqikrksa osQ
:i esa ifjHkkf"kr fd;k tkrk gSA jsfM;u eki esa O;Dr fdlh dks.k osQ fy,] f=kdks.kferh; vuqikr
dk foLrkj] f=kdks.kferh; iQyu dgykrk gSA f=kdks.kferh; iQyuksa osQ fofHkUu prqFkk±'kksa esa fpÉ
fuEufyf[kr rkfydk esa fn, gSaµ
I II III IV
sin x + + – –
cos x + – – +
tan x + – + –
cosec x + + – –
sec x + – – +
cot x + – + –
3.1.4 f=kdks.kferh; iQyuksa osQ izk¡r vkSj ifjlj
iQyu izkar ifjlj
sine R [–1, 1]
cosine R [–1, 1]
tan R – {(2n + 1)
2 : n ∈ Z} R
cot R – {nπ : n ∈ Z} R
sec R – {(2n + 1)
2 : n ∈ Z} R – (–1, 1)
cosec R – {nπ : n ∈ Z} R – (–1, 1)
3.1.5 ledks.k vFkkZr~ 90º ls NksVs ;k mlosQ cjkcj oqQN dks.kksa osQ sine, cosine vkSj
tangent
0° 15° 18° 30° 36° 45° 60° 90°
sine 0 6 2
4
− 5 1
4
− 1
2
10 2 5
4
− 1
2
3
2 1
20/04/2018
36 iz'u izn£'kdk
cosine 1 6 2
4
+ 10 2 5
4
+ 3
2
5 1
4
+ 1
2
1
2 0
tan 0 2 3 − 25 10 5
5
− 1
3 5 25 − 1 3
3.1.6 leoxhZ; ;k lacafèkr dks.k
dks.k 2
nπ ± θ leoxhZ ;k lacafèkr dks.k dgykrs gSa rFkk dks.k θ ± n × 360° lgkokluh
(coterminal) dks.k dgykrs gSaA O;kid leku;u osQ fy,] gesa fuEufyf[kr fu;e izkIr gSa%
( )
2
nπ ± θ osQ fy,] f=kdks.kferh; iQyu dk la[;kRed eku cjkcj gSµ
(a) mlh iQyu osQ eku osQ] ;fn n ,d le iw.kk±d gS rFkk bl eku dk fpÉ ml prqFkk±'k osQ
vuqlkj gksrk gS ftlesa og dks.k fLFkr gSA
(b) θ osQ laxr lgiQyu osQ eku osQ ;fn n ,d fo"ke iw.kk±d gS rFkk iQyu dk fpÉ ml prqFkk±'k
osQ vuqlkj gksrk gS] ftlesa og dks.k fLFkr gSA ;gk¡ sine vkSj cosine, tan vkSj cot rFkk sec
vkSj cosec ,d nwljs osQ lgiQyu gSaA