Math, asked by nimaiparamaniksrp13, 6 months ago

(vií) sing tanſ + sin cosz = 2sin-
sin \frac{\pi}{3} tan \frac{\pi}{6 }  + sin \frac{\pi}{2}cos \frac{\pi}{3 }  = 2 {sin}^{2} \frac{\pi}{4}

Answers

Answered by Anonymous
38

Correct question :

  • \sf{sin \dfrac{\pi}{3} tan \dfrac{\pi}{6 } + sin \dfrac{\pi}{2}cos \dfrac{\pi}{3 } = 2 {sin}^{2} \dfrac{\pi}{4}}

Solution :

π is considered to be 180

  \underline{\boxed{ \sf \blue{LHS}}} = \sf \red {sin \dfrac{\pi}{3} tan \dfrac{\pi}{6 } + sin \dfrac{\pi}{2}cos \dfrac{\pi}{3 }} \\  \\  \\   \implies \purple{\sf{ \dfrac{ \sqrt{3} }{2} } \times  \dfrac{1}{ \sqrt{3} }  + 1 \times  \dfrac{1}{2}}  \\  \\  \\  \implies  \pink{\dfrac{1}{2}   + \dfrac{1}{2}  = 1} \\  \\ \\    \implies  \green{\sf{2 \times  \dfrac{1}{2}}}  \\  \\  \\  \implies \orange{2 \times  (\dfrac{1}{ \sqrt{2} })^{2}}  \\  \\  \\  \implies   \underline{ \boxed{\gray{\sf{2 \sin^{2}  \dfrac{ \pi}{4}}}}} \: \: \: \: \: \: \: \underline{\boxed{\blue{\sf{RHS}}}}

Addition information :

  • tanø = sinø/cosø

  • secø = 1/cosø

  • cotø = 1/tanø = sinø/cosø

  • 1 - tan(ø/2)/1 - tan(ø/2) = ±√1 - sinø/1 + sinø

  • tan ø/2 = ±√1 - cosø/1 + cosø

  • sinø = Cos(90° - ø)

  • cos6= sin(90° - ø)

  • tanø = cot(90° - ø)

  • cotø = tan(90° - ø)

  • secø = cosec(90° - ø)

amitkumar44481: Perfect :-)
Answered by ZAYNN
39

Answer:

\underline{\bigstar\:\textsf{According to the given Question :}}

:\implies\sf sin \dfrac{\pi}{3} tan \dfrac{\pi}{6 } + sin \dfrac{\pi}{2}cos \dfrac{\pi}{3 } = 2 {sin}^{2} \dfrac{\pi}{4}\\\\\\:\implies\sf sin \dfrac{180}{3} \times tan \dfrac{180}{6 } + sin \dfrac{180}{2}\times cos \dfrac{180}{3 } = 2 {sin}^2 \dfrac{180}{4}\\\\\\:\implies\sf sin(60) \times tan(30) + sin(90) \times cos(60) = 2sin^2(45)\\\\\\:\implies\sf \bigg\lgroup\dfrac{ \sqrt{3} }{2} \times \dfrac{1}{ \sqrt{3}}\bigg\rgroup + \bigg\lgroup1 \times \dfrac{1}{2} \bigg\rgroup = 2 \times \bigg\lgroup \dfrac{1}{ \sqrt{2}} \bigg\rgroup^{2}\\\\\\:\implies\sf \dfrac{1}{2} + \dfrac{1}{2} = 2 \times \dfrac{1}{2}\\\\\\:\implies\sf 1 = 1 \qquad\bigg\lgroup LHS=RHS\bigg\rgroup

\rule{180}{1.5}

\bigstar\:\sf Trigonometric\:Values :\\\begin{tabular}{|c|c|c|c|c|c|}\cline{1-6}Radians/Angle & 0 & 30 & 45 & 60 & 90\\\cline{1-6}Sin \theta & 0 & $\dfrac{1}{2} &$\dfrac{1}{\sqrt{2}} & $\dfrac{\sqrt{3}}{2} & 1\\\cline{1-6}Cos \theta & 1 & $\dfrac{\sqrt{3}}{2}&$\dfrac{1}{\sqrt{2}}&$\dfrac{1}{2}&0\\\cline{1-6}Tan \theta&0&$\dfrac{1}{\sqrt{3}}&1&\sqrt{3}& Not D$\hat{e}$fined \\\cline{1-6}\end{tabular}


MisterIncredible: Outstanding answer !
Similar questions