Math, asked by nilam7871, 9 months ago

(viii) (3x + 1)^2 - (3x + 2) (3x - 1)​

Answers

Answered by Delta13
7

Question:

(3 {x}  + 1) {}^{2}  - (3x + 2)(3x - 1)

Solution:

We will expand (3x+1)² using the following algebraic identity.

 \boxed{(a + b) {}^{2} =  {a}^{2}   +  {b}^{2}  + 2ab}

We have

 \rightarrow \: (3x + 1) {}^{2}  - (3x + 2)(3x - 1)

   \small \: \implies  \: (3x) {}^{2}  + (1) {}^{2}  + 2(3x)(1) - (3x + 2)(3x - 1) \\  \\ \small  \implies\: 9{x}^{2}  + 1 + 6x - (3x + 2)(3x - 1) \\  \\  \small  \implies \: 9{x}^{2}  + 1 + 6x - [ \: (3x)(3x - 1) + 2(3x - 1) \: ] \\  \\  \small \implies9{x}^{2}  + 1 + 6x - [ \: 9 {x}^{2} \:  - 3x + 6x - 2 \:  ] \\  \\  \small \implies \: 9 {x}^{2}  + 1 + 6x - [9 {x}^{2} + 3x - 2 ] \\  \\  \small \implies \: 9 {x}^{2}  + 1 + 6x - 9 {x}^{2}  - 3x + 2 \\  \\  \small \implies \: \cancel {9 {x}^{2} } -  \cancel{9 {x}^{2} } + 6x -  3x + 2 + 1 \\  \\  \small \implies \:   3x + 3 \\  \\   \small \implies \:3(x + 1)

Hope it helps you.

Similar questions