Math, asked by anuragdhawane9, 11 months ago

viii.If ex+ey=ex+y,show that dy/dx=-ey-x​

Answers

Answered by IamIronMan0
3

Answer:

 {e}^{x}  +  {e}^{y}  =  {e}^{x + y}

Differentiate wrt x

 {e}^{x}  +  {e}^{y}  . \frac{dy}{dx} =  {e}^{x + y}  . (1+\frac{dy}{dx})  \\  \\ (   {e}^{x + y} -  {e}^{y}  ) \frac{dy}{dx}  =  {e}^{x+y}  -e^x\\ use \:  \: eq \: 1 \\ \\    {e}^{x} \frac{dy}{dx}  =  {e}^{x} (e^y-1) \implies \: \frac{dy}{dx}  =  e^y-1

Use first equation again to get

 e^y=e^{x+y}-e^x = e^x(e^y-1)\\e^{y-x}=(e^y-1)

Similar questions