(viii) Mode =
Median -Mean.
(a) 2,-3 (b) 3,2 (c) -3,-2 (d) 2,3
Answers
Answered by
2
Answer:
3
Step-by-step explanation:
⇒
dx
dy
=
x−1
y
2
−2y
⇒
y
2
−2y
dy
=
(x−1)
dx
⇒∫
y(y−2)
dy
=
x−1
dx
⇒∫
y(y−2)
dy
=log(x−1)+c
Let
⇒
y(y−2)
1
=
y
A
+
(y−2)
B
⇒1=Ay−2A+By
⇒1+2A
⇒A=
2
−1
and(A+B)y=0,
A+B=0→(i)
PutA=
2
−1
inequation(i)
2
−1
+B=0,B=
2
1
⇒∫
y
A
dy+∫
(y−2)
B
dy=log(x−1)+c
⇒
2
−1
∫
y
dy
+
2
1
∫
(y−2)
1
=log(x−1+c
⇒
2
−1
logy+
2
1
log(y−2)=log(x−2)+logc
⇒
2
−1
[log(
y
y−2
)]=log(x−1)c
⇒log
y
y−2
=log(x−1)c
∴
y
(y−2)
=(x−1)c
⇒
y
y
y
−2
=(x−1)
2
c
2
⇒1−(x−1)
2
c
2
=
y
2
∴y=
−1(x−1)
2
c
2
2
Ans.
Similar questions