Math, asked by prishakapoor9367, 1 year ago

Volume and surface area formula

Answers

Answered by vaishnavipillai
3

CUBE:

C.S.A = 4a²

T.S.A = 6a²

Volume  =

CUBOID:

C.S.A = 2(lh+bh)

T.S.A = 2(lb+bh+hl)

Volume = lbh

CYLINDER:

C.S.A =  2πrh

T.S.A = 2πr(r+h)

Volume = 2πr²h

CONE:

C.S.A = πrl

T.S.A = πr(l+r)

Volume = ¹/₃πr²h

SPHERE:

T.S.A = 4πr²

Volume = ⁴/₃πr³

HEMISPHERE:

C.S.A = 2πr²

T.S.A = 3πr²

Volume = ²/₃πr³

FRUSTUM:

C.S.A = π(r+R)l

T.S.A = πl(r+R)+π(r²+R²)

Volume = ¹/₃π(r²+R²+rR)h

PLEASE MARK AS BRAINLIEST

Answered by Anonymous
2

━━━━━━━━━━━━━━━━━━━━━━━━━

\bf\Huge\red{\mid{\overline{\underline{ ANSWER }}}\mid }

━━━━━━━━━━━━━━━━━━━━━━━━━

\Large\fbox{\color{purple}{QUESTION}}

SURFACE AREA VOLUME FORMULAS

━━━━━━━━━━━━━━━━━━━━━━━━━

\Large\fbox{\color{purple}{ SOLUTION }}

\Large\mathcal\green{FRUSTUM}

 \implies \: tsa = \pi \: l(r1 + r2) + \pi \:  {r1}^{2}  +  \pi {r2}^{2}

 \implies volume =  \frac{1}{3}\pi \: h( {r1}^{2}  + r1.r2 +  {r2}^{2} )

\Large\mathcal\purple{CUBOID}

 \implies \: lsa = 2(l + b)h \\  \\  \:  \implies \: tsa = 2(lb + bl + hl) \\  \\ \implies \:  volume \:  = l \times b \times h

\Large\mathcal\blue{CUBE}

  \implies \: lsa =  {4a}^{2}  \\  \\  \implies \: tsa =  {6a}^{2}  \\  \\  \implies \: volume =  {a}^{3}

\Large\mathcal\brown{CYLINDER}

 \implies \: csa = 2\pi \: r \: h \\  \\  \implies \: tsa  = 2\pi \: r(r + h) \\  \\  \implies \: volume \:  = \pi \:  {r}^{2} h</p><p>

\Large\mathcal\orange{CONE}

 \implies \: tsa \:  = \: \pi \: r \: (l + r)  \\  \\  \implies \: csa \:  =  \pi \: r \: l\\  \\  \implies \: volume \:  =  \frac{1}{3} (\pi \:  {r}^{2} h)

\Large\mathcal\red {SPHERE }

\implies \: tsa \:  = 4\pi \: {r}^{2}  \\  \\  \implies \: csa \:  = 4\pi \:  {r}^{2}  \\  \\  \implies \: volume \:  =  \frac{4}{3}   \: {r}^{3}

\Large\mathcal\pink{HEMISPHERE}

\implies \: tsa \:  =3\pi \:  {r}^{2}   \\  \\  \implies \: csa \:  = 2\pi \:  {r}^{2}  \\  \\  \implies \: volume \:  =  \frac{2}{3} \pi \:  {r}^{3}

━━━━━━━━━━━━━━━━━━━━━━━━━

\bf\Large\red{ THANKS \: FOR \: YOUR}

\bf\Large\red{ QUESTION \: HOPE \: IT  }

\bf\Large\red{ HELPS  }

\Large\mathcal\green{FOLLOW \: ME}

━━━━━━━━━━━━━━━━━━━━━━━━━

Similar questions