Math, asked by iqr89, 1 year ago

Volume of a cuboid is 12cm. find the volume in cm 3 of a cuboid whose side are double of the cuboid

Answers

Answered by sahildhande987
16

Answer:

Step-by-step explanation:

Volume of cuboid=12 cm³

Volume of cuboid=l*b*h

Volume of cuboid = length ×breadth ×height

we need to find double volume of cuboid

So,Now all sides are double

hence ,volume of new cuboid

2 length ×2 breadth ×2 height  = 8× length × breadth × height

So,  the volume become 8 times

12× 8  = 96 cm

If u liked my answer please mark it as the brainliest

Answered by Anonymous
90

\rule{300}3

\huge{\blue{\fbox{\bold{\red{UR\:QUESTION}}}}}

\huge {\mathbf {\purple {Q.}}}}Volume of a cuboid is 12cm. find the volume in cm 3 of a cuboid whose side are double of the cuboid

\rule{300}3

\huge{\blue{\fbox{\bold{\red{UR\:ANSWER}}}}}

\Large\bold\purple{given,}

 \sf\dashrightarrow   Volume \:of \:cuboid=12 cm^3

 \sf\dashrightarrow  sides\:of\:other\:cuboid\:are\:double\:of\:the\:cuboid

\Large\bold\green{diagram,}

\setlength{\unitlength}{5mm}\begin{picture}(5,5)\multiput(0,0)(0,6){2}{\multiput(0,0)(2,1){2}{\line(1,0){12}}\multiput(0,0)(12,0){2}{\line(2,1){2}}}\multiput(0,0)(12,0){2}{\multiput(0,0)(2,1){2}{\line(0,1){6}}}\end{picture}

\huge\star\:\:\bf\undeline\red{solution}\\

 \sf\dashrightarrow according\:to\:question

 \tt\implies Volume \:of \:cuboid = length \times breadth \times height

 \sf\dashrightarrow  we\: need \:to \:find \:double \:volume \:of \:cuboid

\sf\underline\bold{now,}

 \sf\dashrightarrow  sides \:are\:doubled

 \sf\therefore volume\:of\:cuboid,

 \sf\implies  2length \times 2breadth \times 2height  = 8(length \times breadth \times height)

 \sf\implies \dfrac{length \times breadth \times height}{length \times breadth \times height}=12 \times 8

 \sf\implies \cancel \dfrac{length \times breadth \times height}{length \times breadth \times height}=12 \times 8

 \sf\implies 12 \times 8=96cm

\huge{\purple{\fbox{\pink{answer=\:96cm}}}}

\rule{300}3

\tt\huge\red{\text{BE \:BRAINLY}}

\rule{300}3

Similar questions