Math, asked by lakhvirsingh2584, 1 month ago

volume of a cuboidal box is 750 cubic metre if the dimensions of cuboid are in the ratio of 3:2:1 find its original Length breadth and height.​

Answers

Answered by Yuseong
20

Step-by-step explanation:

As per the provided information in the given question, we have :

  • Volume of cuboidal box = 750 m³
  • The dimensions of cuboid are in the ratio of 3:2:1.

We've been asked to calculate its length, breadth and height.

As the dimensions of cuboid are in the ratio of 3:2:1, so let's suppose the length , breadth and the height of the cuboid as 3x , 2x and 1x. Thus,

  1. Length = 3x
  2. Breadth = 2x
  3. Height = x

According to the question, the volume of the cuboid is 750 m³. Here, the formula to calculate the volume of the cuboid will act as the linear equation to find the value of x. As we know that,

  \bigstar \quad \underline{\boxed{ \pmb{\mathfrak{Volume}}_{\pmb{\mathfrak{(Cuboid)}}} = \pmb{\mathfrak{l \times b \times h}} }}\\

  • l denotes length
  • b denotes base
  • h denotes height

So, as per the question,

  \longrightarrow \sf{\quad {750 = 3x \times 2x \times x }} \\

Multiplying the terms in the RHS.

  \longrightarrow \sf{\quad {750 = 6x^3 }} \\

Transposing 6 from RHS to LHS.

  \longrightarrow \sf{\quad {\cancel{\dfrac{750}{6}} = x^3 }} \\

Dividing 750 by 6 in LHS.

  \longrightarrow \sf{\quad { 125= x^3 }} \\

Now, put the sign of cube root in both sides.

  \longrightarrow \sf{\quad {  \sqrt[3]{125} =  \sqrt[3]{ {x}^{3} }  }} \\

Writing the cube roots of the terms in LHS and RHS.

  \longrightarrow \quad \boxed{\sf {  \textbf{\textsf{5 = x}}  }} \\

We have to calculated the value of x. We'll be calculating the dimensions of the cuboid.

  • Length = 3x = 3(5) = 15 m
  • Breadth = 2x = 2(5) = 10 m
  • Height = x = 5 m

Answered by Anonymous
33

Answer:

Given :-

  • The volume of a cuboidal box is 750 m³. The dimensions of cuboid are in the ratio of 3 : 2 : 1.

To Find :-

  • What is the original length, breadth and height of a cuboidal box.

Formula Used :-

\clubsuit Volume Of Cuboid Formula :

\footnotesize\mapsto \sf\boxed{\bold{\pink{Volume_{(Cuboid)} =\: Length \times Breadth \times Height}}}

Solution :-

Let,

\mapsto \bf Length_{(Cuboidal\: Box)} =\: 3a\: m

\mapsto \bf Breadth_{(Cuboidal\: Box)} =\: 2a\: m

\mapsto \bf Height_{(Cuboidal\: Box)} =\: a\: m

Given :

\leadsto \sf Volume_{(Cuboidal\: Box)} =\: 750\: m^3

According to the question by using the formula we get,

\bigstar\: \: \bold{\purple{Volume_{(Cuboid)} =\: 3a \times 2a \times a}}

\longrightarrow \sf 3a \times 2a \times a =\: 750

\longrightarrow \sf 6a^2 \times a =\: 750

\longrightarrow \sf 6a^3 =\: 750

\longrightarrow \sf a^3 =\: \dfrac{\cancel{750}}{\cancel{6}}

\longrightarrow \sf a^3 =\: \dfrac{125}{1}

\longrightarrow \sf a^3 =\: 125

\longrightarrow \sf a =\: \sqrt[3]{125}

\longrightarrow \sf a =\: \sqrt[3]{\underline{5 \times 5 \times 5}}

\longrightarrow \sf\bold{\green{a =\: 5}}

Hence, the required original length, breadth and height are ;

Length Of Cuboidal Box :

\longrightarrow \sf Length_{(Cuboidal\: Box)} =\: 3a\: m

\longrightarrow \sf Length_{(Cuboidal\: Box)} =\: (3 \times 5)\: m

\longrightarrow \sf\bold{\red{Length_{(Cuboidal\: Box)} =\: 15\: m}}

Breadth Of Cuboidal Box :

\longrightarrow \sf Breadth_{(Cuboidal\: Box)} =\: 2a\: m

\longrightarrow \sf Breadth_{(Cuboidal\: Box)} =\: (2 \times 5)\: m

\longrightarrow \sf\bold{\red{Breadth_{(Cuboidal\: Box)} =\: 10\: m}}

Height Of Cuboidal Box :

\longrightarrow \sf Height_{(Cuboidal\: Box)} =\: a

\longrightarrow \sf\bold{\red{Height_{(Cuboidal\: Box)} =\: 5\: m}}

{\footnotesize{\bold{\underline{\therefore\: The\: original\: length\: breadth\: and\: height\: of\: cuboidal\: box\: is\: 15\: m\: , 10\: m\: and\: 5\: m\: respectively\: .}}}}

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

VERIFICATION

\implies \sf 3a \times 2a \times a =\: 750

By putting a = 5 we get,

\implies \sf 3(5) \times 2(5) \times 5 =\: 750

\implies \sf 15 \times 10 \times 5 =\: 750

\implies \bf 750 =\: 750

Hence, Verified.

Similar questions