Math, asked by yasho7428, 19 days ago

Volume of a wooden cuboid is 480 cubic cm It's length and breadth are 10 cm &6cm respectively find its height

Answers

Answered by sethrollins13
23

Given :

  • Volume of Cuboid is 480 cm³ .
  • Length and Breadth are 10 cm and 6 cm respectively .

To Find :

  • Height of Cuboid .

Solution :

\longmapsto\tt{Length\:(l)=10\:cm}

\longmapsto\tt{Breadth\:(b)=6\:cm}

Using Formula :

\longmapsto\tt\boxed{Volume\:of\:Cuboid=l\times{b}\times{h}}

Putting Values :

\longmapsto\tt{480=10\times{6}\times{h}}

\longmapsto\tt{480=60\:h}

\longmapsto\tt{\cancel\dfrac{480}{60}=h}

\longmapsto\tt\bf{8\:cm=h}

So , Height of the Cuboid is 8 cm .

Answered by StarFighter
28

Answer:

Given :-

  • The volume of a wooden cuboid is 480 cm³.
  • It's length and breadth are 10 cm & 6 cm respectively.

To Find :-

  • What is the height of a wooden cuboid.

Formula Used :-

\clubsuit Volume Of Cuboid Formula :

\footnotesize \bigstar \: \: \sf\boxed{\bold{\pink{Volume_{(Cuboid)} =\: Length \times Breadth \times Height}}}\: \: \: \bigstar\\

Solution :-

Let,

\mapsto \bf Height_{(Wooden\: Cuboid)} =\: x\: cm\\

Given :

  • Volume = 480 cm³
  • Length = 10 cm
  • Height = 6 cm

According to the question by using the formula we get,

\footnotesize \implies \bf Volume_{(Cuboid)} =\: Length \times Breadth \times Height\\

\implies \sf 480 =\: 10 \times 6 \times x

\implies \sf 480 =\: 60 \times x

\implies \sf 480 =\: 60x

\implies \sf \dfrac{48\cancel{0}}{6\cancel{0}} =\: x

\implies \sf \dfrac{\cancel{48}}{\cancel{6}} =\: x

\implies \sf \dfrac{8}{1} =\: x

\implies \sf 8 =\: x

\implies \sf\bold{\purple{x =\: 8}}\\

Hence, the required height of a wooden cuboid is :

\dashrightarrow \sf Height_{(Wooden\: Cuboid)} =\: x\: cm\\

\dashrightarrow \sf\bold{\red{Height_{(Wooden\: Cuboid)} =\: 8\: cm}}\\

\therefore The height of a wooden cuboid is 8 cm .

\\

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

\\

EXTRA INFORMATION :-

Lateral Surface Area or L.S.A of Cuboid Formula :

\small \bigstar \: \: \sf\boxed{\bold{\purple{L.S.A_{(Cuboid)} =\: 2h(l + b)}}}\: \: \: \bigstar\\

where,

  • L.S.A = Lateral Surface Area
  • l = Length
  • h = Height
  • b = Breadth

Total Surface Area or T.S.A of Cuboid Formula :

\small \bigstar \: \: \sf\boxed{\bold{\red{T.S.A_{(Cuboid)} =\: 2(lb + bh + hl)}}}\: \: \: \bigstar\\

where,

  • T.S.A = Total Surface Area
  • l = Length
  • b = Breadth
  • h = Height

\\

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

Similar questions