Math, asked by deepa3185, 1 year ago

volume of cone 1232cm3 radius of the base 7cm to find total suface area

Answers

Answered by kapil913
5
Hi there ;
_____________________________
\large{Good\: Afternoon}

Above is the Solution ^_^

_____________________________

✨✨BE BRAINLY✨✨
Attachments:
Answered by Anonymous
9

Given :

  • Volume of cone = 1232 cm³
  • Radius of base = 7 cm

To Find :

  • Slant height of cone
  • Total suface area of cone

Solution :

 \large\boxed { \tt \blue{ Volume_{Cone} = \dfrac{\pi  {r}^{2}h }{3}}  } \\  \\  \tt 1232 =  \frac{22 \times \cancel{7} \times 7 \times h }{ \cancel{7} \times 3}  \\  \\  \tt h =  \frac{1232 \times 3}{22 \times 7}  \\  \\  \tt h =  \frac{3696}{154}  \\  \\  \tt h = 24 \: cm

By Using Pythagoras theorem :

 \tt  {l}^{2}  =  {h}^{2}  +  {r}^{2}  \\  \\  \tt {l}^{2}  =  {24}^{2} +  {7}^{2}   \\  \\  \tt  {l}^{2}  = 576 + 49 \\  \\  \tt l =  \sqrt{625}  \\  \\  \tt l = 25  \: cm

Now we can find Total suface area of cone

 \large\boxed{ \tt \orange{TSA_{Cone} = \pi r(r + l)}} \\  \\  \implies \tt \frac{22 \times 7(7 + 25)}{7} \\  \\  \tt \implies \frac{22 \times \cancel 7 \times 32}{ \cancel7} \\  \\  \implies\tt 704   \\  \\  \large  \boxed{ \tt \green{ TSA_{Cone} = 704 {cm}^{2} }}

Similar questions