Math, asked by manilkumar, 11 months ago

Volume of cone is 288πcm³ and radius is 6cm then find it's height​

Answers

Answered by Anonymous
5

Given :-

volume = 288πcm³

Radius = 6cm

Solution :-

Volume of cone is 1/3 cylinder's volume

Volume of cone = 1/3 πr²h

  • volume = 288πcm³
  • radius (r) = 6cm
  • h (height)

➡ 288 π = 1/3 × π × 6 × 6 × h

➡ 288 π = π × 2 × 6 × h

➡ 288 π = 12 π h

➡ 288 π/12 π = h

➡ 288/12 = h

➡ h = 24

.°. Height of the cone = 24 cm.

Answered by amitkumar44481
1

AnsWer :

24 Cm.

Given :

  • Volume of Cone is 288π³
  • Radius of cone is 6 Cm.

Formula :

 \tt  \dagger \: \: \: \: \: V_{Cone} =  \frac{1}{3}\pi {r}^{2} h

 \tt  \dagger \: \: \: \: \: TSA_{Cone} =  \pi r( r + l )

 \tt  \dagger \: \: \: \: \: CSA_{Cone} = \pi rl

 \tt  \dagger \: \: \: \: \: Slant \: Height_{Cone} ( l ) =  \sqrt{ {r}^{2} + {h}^{2} }

To Find :

  • Height of Cone.

Solution :

 \tt  \longmapsto V_{Cone} =  \frac{1}{3}\pi {r}^{2} h

 \tt \longmapsto 288 \pi=  \frac{1}{3}\pi {r}^{2} h

 \tt\longmapsto 288 =  \frac{1}{3} {r}^{2} h

 \tt\longmapsto 288  \times 3=  {(6)}^{2}  \times h

 \tt\longmapsto  \dfrac{288 \times 3}{36}  =   h

 \tt\longmapsto  \dfrac{288}{12}  =   h

 \tt\longmapsto   h = 24 \: cm.

Therefore, the height of Cone is 24 Cm.

Similar questions