Math, asked by sanjivanisaraf17, 1 month ago

volume of cylinder is 6160cm cube find the radius of cylinder if height is 10 cm also find the total surface area of the cylinder​

Answers

Answered by ravi2303kumar
2

Answer:

radius = 14cm

TSA = 2112 cm²

Step-by-step explanation:

Given , the volume of the cylinder, V = 6160 cm³

also, the height of the cylinder, h    = 10cm

we know , Volume of the cylinder  = \pir²h cu.units

ie., \pir²h = 6160 cm³

=> \pir²(10) = 6160 cm³

=> \pir² = 6160/10 cm²

=> \pir² = 616 cm²

=> r² = 616*(7/22)cm²

=> r² = 28*7 cm²

=> r² = 196 cm²

=> r = √196 cm

=> r = 14 cm

we know, TSA of cylinder = 2\pir(h+r) sq.units

                                           = 2*(22/7)*14*(10+14) cm²

                                           = 2*(22)*2*(24) cm²

                                           = 88*24 cm²

                                           = 2112 cm²

Answered by OtakuSama
59

Question:-

Volume of cylinder is 6160cm cube. Find the radius of cylinder if height is 10cm. Also find the total surface area of the cylinder.

Required Answer:-

Given:-

\\ \sf{\rightarrow{Volume\:of\:the\:cylinder = 6160 {cm}^{3} }}

\sf{\rightarrow{Height\:of\:the\:cylinder = 10cm}}\\\\

To Find:-

\\\sf{\rightarrow{Radius\:of\:the\:cylinder}}

\sf{\rightarrow{Total\:surface\:area\:of\:the\:cylinder}}\\\\

Solution:-

As we know that:-

\\ \underline{\boxed{\rm{\blue{\bold{Radius\:of\:a\:cylinder }=  \sqrt{ \frac{V}{\pi h}}}}}} \\\\

Where,

  • V is for volume of the cylinder.
  • h is for height of the cylinder.

Substituting the values:-

\\ \sf{\bold{Radius\:of\:the\:cylinder =   \sqrt{ \frac{6160}{ \frac{22}{7}  \times 10} }}}

\\\sf{\implies{\bold{Radius\:of\:the\:cylinder} =  \sqrt{ \frac{6160}{31.4285} } }}

 \\\sf{\implies{\bold{Radius\:of\:the\:cylinder} =  \sqrt{ 196.0044 } }}

  \\\sf{\therefore{\bold{Radius\:of\:the\:cylinder} =  14.000015  / \red{14}}}

 \\ \underline{\boxed{\rm{\green{Hence,\:radius\:of\:the\:cylinder = \bold{14cm}}}}}\\\\

Again,

\\\underline{\boxed{\blue{\bold{Total\:surface\:area\:of\:a\:cylinder} = 2\pi rh + 2\pi {r}^{2} }}}\\\\

Substituting the values:-

\\\sf{\bold{T.S.A. \:of\:the\:cylinder} = 2 \times  \frac{22}{7}  \times 14 \times 10 + 2 \times  \frac{22}{7}  \times  {(14)}^{2} }

 \\\sf{\bold{\implies{T.S.A. \:of\:the\:cylinder}} = 880 + 1232 }

 \\\sf{\bold{\therefore{T.S.A. \:of\:the\:cylinder}} }=\red{2112}\\\\

 \\ \underline{\boxed{\rm{\green{Hence,\:Total\:surface\:area\:of\:the\:cylinder = \bold{2112 {cm}^{2} }}}}}\\\\

Similar questions