Math, asked by dhekshaths1510, 7 months ago

volume of right circular cylinder with the height equal to the radius is 25 1/7 cm 3. find the height of the cylinder?


please answer me​

Answers

Answered by varadad25
5

Answer:

The height of the cylinder is 2 cm.

Step-by-step-explanation:

We have given that,

Volume of cylinder \displaystyle{\sf\:=\:25\:\dfrac{1}{7}\:cm^3}

Height of cylinder ( h ) = Radius of cylinder ( r )

We have to find the height of the cylinder.

Now, we know that,

\displaystyle{\boxed{\pink{\sf\:Volume\:of\:cylinder\:=\:\pi\:r^2\:h\:}}}

\displaystyle{\implies\sf\:25\:\dfrac{1}{7}\:=\:\dfrac{22}{7}\:\times\:h^2\:\times\:h\:\qquad\cdots[\:\because\:r\:=\:h\:]}

\displaystyle{\implies\sf\:\dfrac{25\:\times\:7\:+\:1}{7}\:=\:\dfrac{22}{7}\:\times\:h^3}

\displaystyle{\implies\sf\:h^3\:=\:\dfrac{175\:+\:1}{\cancel{7}}\:\times\:\dfrac{\cancel{7}}{22}}

\displaystyle{\implies\sf\:h^3\:=\:\cancel{\dfrac{176}{22}}}

\displaystyle{\implies\sf\:h^3\:=\:8}

\displaystyle{\implies\sf\:\sqrt[3]{\sf{h^3}}\:=\:\sqrt[3]{\sf{8}}}

\displaystyle{\implies\sf\:h\:=\:2}

\displaystyle{\therefore\:\underline{\boxed{\red{\sf\:Height\:=\:2\:cm\:}}}}

∴ The height of the cylinder is 2 cm.

Answered by diwanamrmznu
15

GIVEN:-

volume of right circular cylinder with the height equal to the radius is 25 1/7 cm ^3.

FIND:-

  • height of cylinder

SOLUTION:-

  • we know that cylinder volume formula

 \implies \red{ \pi \: r {}^{2} h}

  • and given that cylinder volume 25 1/7 cm^3

and height =radius

we find height so let radius =h

question according

 \implies \: \pi \:  h {}^{2}h = 25 \:  \frac{1}{7}   \\  \\  \implies \: h {}^{3}  =  \frac{ \cancel{7}(25 \times 7 + 1)}{ \cancel7 \times 22}  \\  \\  \implies \: h {}^{3}  =   \cancel{\frac{176}{22}} \\

  • h^3=8

  • h^3=2^3

  • h=2

therefore cylinder height=2 cm

and radius =2×2=4 cm

====================================

I hope it helps you

Similar questions