Math, asked by devrukhkarvaishnavi2, 2 months ago

volume of the cone is 1232, r=7 find total surface area ​

Answers

Answered by kvparikshith
0

Step-by-step explanation:

hope it helps

s mark brainliest

Attachments:
Answered by DüllStâr
62

 \large \pink{\underline{\boxed{ \rm{}Required\:Answer}}}

Diagram:

\setlength{\unitlength}{1.2mm}\begin{picture}(5,5)\thicklines\put(0,0){\qbezier(1,0)(12,3)(24,0)\qbezier(1,0)(-2,-1)(1,-2)\qbezier(24,0)(27,-1)(24,-2)\qbezier(1,-2)(12,-5)(24,-2)}\put(-0.5,-1){\line(1,2){13}}\put(25.5,-1){\line(-1,2){13}}\multiput(12.5,-1)(2,0){7}{\line(1,0){1}}\multiput(12.5,-1)(0,4){7}{\line(0,1){2}}\put(18,1.6){\sf{7(radius)}}\put(9.5,10){\sf{? (Height)}}\end{picture}

If you can't see the diagram then take a look on attached picture

Given:

  • Volume of Cone = 1232

  • radius = 7

\\

To find :

  • Area

\\

We know:

Formula of cone:-

  \bigstar\boxed{ \rm{}Area \: of \: Cone =\pi \: r(r +  \sqrt{ {h}^{2} +  {r}^{2}  }  )}

\\

So as we can see to find area of cone we need height of cylinder.

So first let's find height of cone:

We can find by using formula volume of cone:

\\

 \bigstar \boxed{ \rm{}Volume \: of \: Cone  = \pi {r}^{2} \times \frac{h}{3}  }

\\

So let's find it!

\\

 \dashrightarrow \sf Volume \: of \: Cone  = \pi {r}^{2}  \times  \dfrac{h}{3}

\\

 \dashrightarrow \sf 1232=  \dfrac{22}{7} \times {7}^{2}  \times  \dfrac{h}{3}

\\

 \dashrightarrow \sf 1232=  \dfrac{22}{7} \times7 \times 7\times  \dfrac{h}{3}

\\

 \dashrightarrow \sf 1232=  \dfrac{22}{\cancel7} \times\cancel7 \times 7\times  \dfrac{h}{3}

\\

 \dashrightarrow \sf 1232=  \dfrac{22}{1}\times 7\times  \dfrac{h}{3}

\\

 \dashrightarrow \sf 1232=  \dfrac{22 \times 7 \times h}{3}

\\

 \dashrightarrow \sf 1232 \times  \dfrac{3}{22 \times 7} =h

\\

 \dashrightarrow \sf \cancel{1232} \times  \dfrac{3}{\cancel{22 }\times 7} =h

\\

 \dashrightarrow \sf 56 \times  \dfrac{3}{ 7} =h

\\

 \dashrightarrow \sf \cancel{56} \times  \dfrac{3}{\cancel{ 7}} =h

\\

 \dashrightarrow \sf h = 3 \times 8

\\

 \dashrightarrow\underline{\boxed {\sf h = 24}}

Now Let's find area by using the formula which is mentioned first:

 \dashrightarrow\sf{}Area \: of \: Cone =\pi \: r(r +  \sqrt{ {h}^{2} +  {r}^{2}  }  ) \\

\\

\\

 \dashrightarrow\sf{}Area \: of \: Cone = \dfrac{22}{7}  \: \times 7(7+  \sqrt{ {(24)}^{2} +  {(7)}^{2}  }  ) \\

\\

 \dashrightarrow\sf{}Area \: of \: Cone = \dfrac{22}{7}  \: \times 7(7+  \sqrt{ 576 +  {49}}  ) \\

\\

 \dashrightarrow\sf{}Area \: of \: Cone = \dfrac{22}{7}  \: \times 7(7+  \sqrt{ 625}  ) \\

\\

 \dashrightarrow\sf{}Area \: of \: Cone = \dfrac{22}{7}  \: \times 7(7+  \sqrt{ 5 \times 5 \times 5 \times 5}  ) \\

\\

 \dashrightarrow\sf{}Area \: of \: Cone = \dfrac{22}{7}  \: \times 7(7+  \sqrt{ {5}^{2} \times  {5}^{2} }  ) \\

\\

 \dashrightarrow\sf{}Area \: of \: Cone = \dfrac{22}{7}  \: \times 7(7+  5 \times 5) \\

\\

 \dashrightarrow\sf{}Area \: of \: Cone = \dfrac{22}{7}  \: \times 7(7+25) \\

\\

 \dashrightarrow\sf{}Area \: of \: Cone = \dfrac{22}{\cancel7}  \: \times \cancel7(7+25) \\

\\

 \dashrightarrow\sf{}Area \: of \: Cone = 22 \times (7 + 25)

\\

 \dashrightarrow\sf{}Area \: of \: Cone = 22 \times 32

\\

 \dashrightarrow  \underline{\boxed{\sf{}Area \: of \: Cone = 704}}

\\

Note:-

as no units are mentioned.°. final answer also have no units

Happy learning! :)

Attachments:
Similar questions