Math, asked by addepallisuresh4, 11 months ago

volume of the cone is 288Pi cm3 and radius is 6cm .then find the height​

Answers

Answered by Anonymous
8

Given:

  • volume of the cone =288pi cm³
  • Radius =6cm

To find out:

Height =?

Formula used:

volume \: of \: cone = \pi \: r {}^{2}  \frac{h}{3}

Solutions:

288\pi \: cm { }^{2}  = \pi \times 6   {}^{2}  \times  \frac{h}{3}

 288\pi \times 3  = 36\pi \: h

864\pi = 36\pi \: h

h =  \frac{864\pi}{36\pi}

h = \red {24 \: cm}

Answered by Anonymous
26

Given :

  • Volume of cone 288 π cm³
  • Radius of cone 6 cm.

To Find :

  • Height of the cone

Solution :

- Volume of cone is volume of a cylinder.

- Volume of cone equals as times value of π times value of square of radius times the height of the cone.

Formula :

\large{\boxed{\sf{\red{Volume_{cone}\:=\:\dfrac{1}{3}\:\pi\:r^2h}}}}

Where,

  • Volume 288 π cm³
  • r radius = 6 cm
  • h height of cone

Block in the available data,

\longrightarrow \sf{288\:\pi\:=\:\dfrac{1}{\cancel{3}}\:\:\times\:\pi\:\times\:\cancel{6}\:\times\:6\:\times\:h}

\longrightarrow \sf{288\:\pi\:=\:\pi\:\times\:2\:\times\:6\:\times\:h}

\longrightarrow \sf{288\:\pi\:=\:\:12\:\pi\:h}

\longrightarrow \sf{\dfrac{288\:\cancel{ \pi}}{12\:\cancel{\pi}}\:=\:h}

\longrightarrow \sf{\cancel{\dfrac{288}{12}}\:=\:h}

\longrightarrow \sf{24=h}

\large{\boxed{\sf{\purple{Height\:of\:the\:cone\:=\:24\:cm}}}}

Similar questions