Math, asked by alameen96, 5 months ago

Volume of two cubes are in the ratio 64 : 27. The ratio of their surface areas is :​

Answers

Answered by sindhucd74
8

Answer:HERE IS UR ANSWER

Step-by-step explanation::​Volume of two cubes V1:V2 = 64:27

That is a13 : a23 = 43 : 33

⇒ a1 : a2 = 4 : 3

Therefore,  a1 / a2 = 4 / 3

Ratio of surface areas is  6a12 : 6a22  

=  a12 : a22  

= (a1 / a2)2  

= (4 / 3)2

= 16 : 9

HOPE IT IS HELPFULL TO U

Answered by SuitableBoy
58

{\huge{\underline{\underline{\sf{\maltese Question}}}}}

Volume of two cubes are in the ratio 64 : 27 . The ratio of their Surface areas is ?

{\huge{\underline{\underline{\sf{\maltese Answer\checkmark}}}}}

Let there be two cubes

  • Cube 1 &
  • Cube 2

# Given :

  • \rm V_{1} : \rm V_{2}=64:27

# To Find :

  • \rm TSA_{1} : TSA_{2} = ?

# Solution :

Since ratios of volumes are given ,

 \rm \:  \frac{v_{1} }{v _{2}}  =  \frac{64}{27}  \\

We know that :

  \boxed{\rm \: volume \: of \: cube =  {(side)}^{3} }

So ,

 \rm \frac{ {side_{1} }^{3} }{{side_{2}}^{3}  }  =  \frac{64}{27}  \\

 \mapsto \rm \:    {( \frac{side_{1}}{side_{2}} )}^{3}   =  \frac{4 \times 4 \times 4}{3 \times 3 \times 3}  \\

 \mapsto \rm \:  \frac{side _{1} }{side_{2} }  =  \sqrt[3]{( \frac{4 \times 4 \times 4}{3 \times 3 \times 3} )}  \\

 \mapsto  \boxed{\rm \:  \frac{side_{1}}{side_{2} } =  \frac{4}{3}  }....(i)

Now ,

We have to find the ratio of TSA s

 \rm \:  \frac{tsa _{1} }{tsa _{2}}  =  \frac{ \cancel6 \times  {(side _{1})}^{2} }{ \cancel6 \times  {(side_{2}) }^{2} }  \\

 \implies \rm \:  \frac{tsa_{1}}{tsa_{2} }  =  \frac{ {(side_{1}) }^{2} }{ {(side_{2}) }^{2} }  \\

 \implies \rm \:  \frac{tsa_{1}}{tsa_{2}}  =  {( \frac{side_{1} }{side_{2} }) }^{2}  \\

now , from equation (i)

 \implies  \rm \:  \frac{tsa _{1} }{tsa_{2} }  =  {( \frac{4}{5} )}^{2}  \\

 \implies \boxed{ \rm \: \frac{tsa_{1} }{tsa _{2}}   =  \frac{16}{9} }

So ,

The ratio of their Surface areas would be 16 : 9 .

Similar questions