Math, asked by tejswiniadraskar, 2 months ago

w is a complex cube root unity than show that (1-w)(1-w²)(1-w⁴)(1-w⁵)=9​

Answers

Answered by senboni123456
0

Step-by-step explanation:

We have,

(1  -  w)(1 -  {w}^{2} )(1 -  {w}^{4} )(1 -  {w}^{5} ) \\

 = (1  -  w)(1 -  {w}^{2} )(1 -  {w}^{3}.w )(1 -  {w}^{3}. {w}^{2}  ) \\

 = (1  -  w)(1 -  {w}^{2} )(1 -  w )(1 -   {w}^{2}  ) \\

 = \{ (1  -  w)(1 -  {w}^{2} ) \} ^{2}  \\

 = \{ 1 - w -  {w}^{2} -  {w}^{3}   \} ^{2}  \\

 = ( 1 - w -  {w}^{2} -    1   ) ^{2}  \\

 = ( - w -  {w}^{2}    ) ^{2}  \\

 = ( w  +   {w}^{2}    ) ^{2}  \\

 = ( w)^{2}   +   {(w)}^{4}    + 2 { w}^{3}   \\

 = ( w)^{2}   +   {(w)}^{3}.w    + 2 { w}^{3}   \\

 =  w^{2}   +   w    + 2    \\

 =   \frac{ - 1 - i \sqrt{3} }{2}   +    \frac{ - 1 + i \sqrt{3} }{2}    + 2    \\

 =   \frac{ - 1 - i \sqrt{3} - 1 + i \sqrt{3}  + 4 }{2}   +      \\

 =   \frac{ - 2   + 4 }{2}         \\

 =   \frac{  2}{2}   = 1       \\

Similar questions