Math, asked by reshamane153, 1 day ago

want answer urgent give proper answer otherwise it will be reported​

Attachments:

Answers

Answered by MysticSohamS
1

Answer:

hey here is your solution

pls mark it as brainliest

and also pls also check that determinant sum which I posted some days ago

which of the following options doesn't equal to zero?

this one

Step-by-step explanation:

to \: find =  \\ cosec \: x + cot \: x \\  \\ given :  \:  \\   \\ sin \: x =  \frac{2pq}{p {}^{2} + q {}^{2}  }  \\  \\ thus \: then \\  \\ cosec \: x =  \frac{p {}^{2} + q {}^{2}  }{2pq}  \\  \\ we \: have \\  \\ 1 + cot {}^{2} x = cosec {}^{2} x \\  \\ cot {}^{2} x = cosec {}^{2} x - 1 \\  \\  = ( \frac{p {}^{2}  + q {}^{2} }{2pq} ) {}^{2}  - 1 \\  \\  =  \frac{p {}^{4} + q {}^{4}  + 2p {}^{2} q {}^{2}  }{4p {}^{2} q {}^{2} }  - 1 \\  \\  =  \frac{p {}^{4}  + q {}^{4}  + 2p {}^{2}q {}^{2}   - 4p {}^{2} q {}^{2} }{4p {}^{2}q {}^{2}  }  \\  \\  =  \frac{p {}^{4}  + q {}^{4}  - 2p {}^{2} q {}^{2} }{4p {}^{2} q {}^{2} }  \\  \\  =  \frac{(p {}^{2}  - q {}^{2}) {}^{2}  }{(2pq) {}^{2} }  \\  \\  = ( \frac{p {}^{2}  - q {}^{2} }{2pq} ) {}^{2}  \\  \\ taking \: square \: roots \: on \: both \: sides \\ we \: get \: then \\  \\  \\ cot \: x =  \frac{p {}^{2}  - q {}^{2} }{2pq}  \\  \\ so \: hence \\  \\ cosec \: x + cot \: x   =  \frac{p {}^{2}  + q {}^{2} }{2pq}  +  \frac{p {}^{2}  - q {}^{2} }{2pq}  \\  \\  =  \frac{p {}^{2}  +q {}^{2} + p {}^{2}  -  q {}^{2}  }{2pq}  \\  \\  =  \frac{2p {}^{2} }{2pq}  \\  \\ cosec \: x + cot \: x =  \frac{p}{q}

Similar questions