Math, asked by pd26, 8 months ago

Want proper explanation

Attachments:

Answers

Answered by ayeshakalam07
0

Answer:

Identity used :

(a + b)(a - b) = {a}^{2} - {b}^{2}(a+b)(a−b)=a

2

−b

2

\begin{gathered}\frac{7 + 3 \sqrt{5} }{3 + \sqrt{5} } + \frac{7 - 3 \sqrt{5} }{3 - \sqrt{5} } = a + b\sqrt{5} \\ \\\end{gathered}

3+

5

7+3

5

+

3−

5

7−3

5

=a+b

5

L.H.S,

On rationalizing the denominator we get,

\begin{gathered}= \frac{7 + 3 \sqrt{5} }{3 + \sqrt{5} } \times \frac{3 - \sqrt{5} }{3 - \sqrt{5} } + \frac{7 - 3 \sqrt{5} }{3 - \sqrt{5} } \times \frac{3 + \sqrt{5} }{3 + \sqrt{5} } \\ \\ = \frac{7(3 - \sqrt{5} ) + 3 \sqrt{5} (3 - \sqrt{5} )}{ {(3)}^{2} - {( \sqrt{5}) }^{2} } + \frac{7(3 + \sqrt{5} ) - 3 \sqrt{5} (3 + \sqrt{5} )}{ {(3)}^{2} - {( \sqrt{5}) }^{2} } \\ \\ = \frac{21 - 7 \sqrt{5} + 9 \sqrt{5} - 15}{9 - 5} + \frac{21 + 7 \sqrt{5} - 9 \sqrt{5} - 15}{9 - 5} \\ \\ = \frac{6 + 2 \sqrt{5} }{4} + \frac{ 6 - 2 \sqrt{5} }{4} \\ \\ = \frac{3 + \sqrt{5} }{2} + \frac{3 - \sqrt{5} }{2} \\ \\ = \frac{3 + \sqrt{5} + 3 - \sqrt{5} }{2} \\ \\ = \frac{6}{2} \\ \\ = 3\end{gathered}

=

3+

5

7+3

5

×

3−

5

3−

5

+

3−

5

7−3

5

×

3+

5

3+

5

=

(3)

2

−(

5

)

2

7(3−

5

)+3

5

(3−

5

)

+

(3)

2

−(

5

)

2

7(3+

5

)−3

5

(3+

5

)

=

9−5

21−7

5

+9

5

−15

+

9−5

21+7

5

−9

5

−15

=

4

6+2

5

+

4

6−2

5

=

2

3+

5

+

2

3−

5

=

2

3+

5

+3−

5

=

2

6

=3

On comparing we get,

a = 3

b = 0

Step-by-step explanation:

marrk brainliest

Similar questions