Math, asked by rashikack, 19 days ago

Wanted the Answer to this question with appropriate Steps, Can anyone help??​

Attachments:

Answers

Answered by suhail2070
0

Answer:

HENCE PROVED

LHS = RHS

Step-by-step explanation:

( \csc(90 -  \alpha )  -   \sin(90 -  \alpha ) )( \csc( \alpha )  -  \sin( \alpha) ) ( \tan( \alpha )  +  \cot( \alpha ))   \\  \\  = ( \sec( \alpha )  -  \cos( \alpha )) ( \csc( \alpha )  -  \sin( \alpha )) ( \tan( \alpha )  +  \cot( \alpha ))  \\  \\  = ( \frac{1 -  { \cos( \alpha ) }^{2} }{ \cos( \alpha ) } )( \frac{1 -  { \sin( \alpha ) }^{2} }{ \sin( \alpha ) } )( \frac{ { \cos( \alpha ) }^{2} +  { \sin( \alpha ) }^{2}  }{ \sin( \alpha ) \cos( \alpha )  } ) \\  \\  =   \frac{ { \sin( \alpha ) }^{2}  { \cos( \alpha ) }^{2}(1) }{ { \sin( \alpha ) }^{2}  { \cos( \alpha ) }^{2} }  \\  \\  = 1 = rhs.

Similar questions