Wap to print all the three digit prime palindrome
Answers
Answer:A palindromic prime (sometimes called a palprime) is a prime number that is also a palindromic number.
Given a number n, print all palindromic primes smaller than or equal to n. For example, If n is 10, the output should be “2, 3, 5, 7′. And if n is 20, the output should be “2, 3, 5, 7, 11′.
Idea is to generate all prime numbers smaller than or equal to given number n and checking every prime number whether it is palindromic or not.
To find if a given number is prime or not- sieve-of-eratosthenes method
To check whether the given number is palindromic number or not: Recursive function for checking palindrome
Below is the implementation of above algorithm:
C++
filter_none
edit
play_arrow
brightness_4
// C++ Program to print all palindromic primes
// smaller than or equal to n.
#include<bits/stdc++.h>
using namespace std;
// A function that reurns true only if num
// contains one digit
int oneDigit(int num)
{
// comparison operation is faster than
// division operation. So using following
// instead of "return num / 10 == 0;"
return (num >= 0 && num < 10);
}
// A recursive function to find out whether
// num is palindrome or not. Initially, dupNum
// contains address of a copy of num.
bool isPalUtil(int num, int* dupNum)
{
// Base case (needed for recursion termination):
// This statement/ mainly compares the first
// digit with the last digit
if (oneDigit(num))
return (num == (*dupNum) % 10);
// This is the key line in this method. Note
// that all recursive/ calls have a separate
// copy of num, but they all share same copy
// of *dupNum. We divide num while moving up
// the recursion tree
if (!isPalUtil(num/10, dupNum))
return false;
// The following statements are executed when
// we move up the recursion call tree
*dupNum /= 10;
// At this point, if num%10 contains i'th
// digit from beiginning, then (*dupNum)%10
// contains i'th digit from end
return (num % 10 == (*dupNum) % 10);
}
// The main function that uses recursive function
// isPalUtil() to find out whether num is palindrome
// or not
int isPal(int num)
{
// If num is negative, make it positive
if (num < 0)
num = -num;
// Create a separate copy of num, so that
// modifications made to address dupNum don't
// change the input number.
int *dupNum = new int(num); // *dupNum = num
return isPalUtil(num, dupNum);
}
// Function to generate all primes and checking
// whether number is palindromic or not
void printPalPrimesLessThanN(int n)
{
// Create a boolean array "prime[0..n]" and
// initialize all entries it as true. A value
// in prime[i] will finally be false if i is
// Not a prime, else true.
bool prime[n+1];
memset(prime, true, sizeof(prime));
for (int p=2; p*p<=n; p++)
{
// If prime[p] is not changed, then it is
// a prime
if (prime[p] == true)
{
// Update all multiples of p
for (int i=p*2; i<=n; i += p)
prime[i] = false;
}
}
// Print all palindromic prime numbers
for (int p=2; p<=n; p++)
// checking whether the given number is
// prime palindromic or not
if (prime[p] && isPal(p))
cout << p << " ";
}
// Driver Program
int main()
{
int n = 100;
printf("Palindromic primes smaller than or "
"equal to %d are :\n", n);
printPalPrimesLessThanN(n);
}
Explanation: