Math, asked by md9235298, 2 months ago

Warning No Spam
Answer It correctly.
Ch- Quadratic Surds​

Attachments:

Answers

Answered by mathdude500
18

\large\underline{\sf{Given- }}

\rm :\longmapsto\:x =  \sqrt{3} +  \sqrt{2}

\large\underline{\sf{To\:Find - }}

\rm :\longmapsto\: {x}^{3} + \dfrac{1}{ {x}^{3} }

\begin{gathered}\Large{\bold{{\underline{Formula \: Used - }}}}  \end{gathered}

 \red{\boxed{ \bf{ \: (x + y)(x - y) =  {x}^{2} -  {y}^{2}}}}

 \red{\boxed{ \bf{ \:  {x}^{3} +  {y}^{3} =  {(x + y)}^{3} - 3xy(x + y)}}}

\large\underline{\sf{Solution-}}

Given that

\rm :\longmapsto\:x =  \sqrt{3} +  \sqrt{2}

Consider,

\rm :\longmapsto\:\dfrac{1}{x}

\rm \:  =  \:  \:\dfrac{1}{ \sqrt{3} +  \sqrt{2}  }

On rationalizing the denominator, we get

\rm \:  =  \:  \:\dfrac{1}{ \sqrt{3} +  \sqrt{2}  }  \times \dfrac{ \sqrt{3} -  \sqrt{2}  }{ \sqrt{3}  -  \sqrt{2} }

\rm \:  =  \:  \:\dfrac{ \sqrt{3}  -  \sqrt{2} }{ {( \sqrt{3} )}^{2}  -  {( \sqrt{2}) }^{2} }

\rm \:  =  \:  \:\dfrac{ \sqrt{3}  -  \sqrt{2} }{3 - 2}

\rm \:  =  \:  \:\dfrac{ \sqrt{3}  -  \sqrt{2} }{1}

\rm \:  =  \:  \: \sqrt{3} -  \sqrt{2}

\bf\implies \:\dfrac{1}{x} \: =  \: \sqrt{3} -  \sqrt{2}

So,

\rm :\longmapsto\:x + \dfrac{1}{x}

\rm \:  =  \:  \: \sqrt{3} +  \sqrt{2} +  \sqrt{3} -  \sqrt{2}

\rm \:  =  \:  \:2 \sqrt{3}

\bf\implies \:\:x + \dfrac{1}{x}  = 2 \sqrt{3}

Now,

\rm :\longmapsto\: {x}^{3} + \dfrac{1}{ {x}^{3} }

\rm \:  =  \:  \: {\bigg(x + \dfrac{1}{x}  \bigg) }^{3} - 3 \times x \times \dfrac{1}{x}  \times \bigg(x + \dfrac{1}{x} \bigg)

\rm \:  =  \:  \: {(2 \sqrt{3}) }^{3}  - 3 \times 1 \times 2 \sqrt{3}

\rm \:  =  \:  \:24 \sqrt{3} - 6 \sqrt{3}

\rm \:  =  \:  \:18 \sqrt{3}

\bf\implies \: {x}^{3} + \dfrac{1}{ {x}^{3} }  = 18 \sqrt{3}

Additional Information :-

More Identities to know :-

(a + b)² = a² + 2ab + b²

(a - b)² = a² - 2ab + b²

a² - b² = (a + b)(a - b)

(a + b)² = (a - b)² + 4ab

(a - b)² = (a + b)² - 4ab

(a + b)² + (a - b)² = 2(a² + b²)

(a + b)³ = a³ + b³ + 3ab(a + b)

(a - b)³ = a³ - b³ - 3ab(a - b)

Similar questions