Math, asked by sampadroutsiku, 5 months ago

was the rate of interest
8. Calculate the time in which 5,000 would
become 5.500 at an interest rate of 8% per
annum.
hank​

Answers

Answered by Anonymous
67

Answer:

 \underline{ \sf{ \underline{☃Question:}}}

Calculate the time in which 5,000 would become 5.500 at an interest rate of 8% per annum.

 \underline{  \sf{ \underline{☃Given:}}}

  • Principal (p) = Rs.5000
  • Amount (A) = Rs.5500
  • Rate per Annum = 8%

{ \underline{ \sf{ \underline{ ☃Find:}}}}

  • Time = ?

{ \underline{ \sf{ \underline{  ☃Solution:}}}}

We know that,

 \:  \:  \:  \:  \:  \:  \: { \boxed{  \rm {S.I =  \frac{PRT}{100} }}}

 \:  \:  \:  \:  \:  \:  \:  \: { \boxed{ \rm{A=P+S.I}}}

Let us take the formula of SI in second formula

{ \to{ \rm{A = P +  \frac{PRT}{100} }}}

{ \to{ \rm{A−P =  \frac{PRT}{100} }}}

{ \to{ \rm{5500 - 5000 =  \frac{5000 \times 8  \times T}{100} }}}

{ \to{ \rm{500 =  \frac{40000 \times \: T }{100} }}}

{ \to{ \rm{500 = 400T}}}

{ \to{ \rm{T =  \frac{500}{400} }}}

{ \to{ \rm{T =  \frac{5}{4} = 1.25 }}}

{ \sf{Therefore, Time = 1.25 Years}}

Answered by amazingbuddy
25

\sf{\bold{\pink{\underline{\underline{Given :}}}}}

  • Principle = Rs. 5000
  • Rate = 8%
  • Amount = Rs. 5500

______________________

\sf{\bold{\green{\underline{\underline{To\:Find :}}}}}

  • Time

______________________

\sf{\bold{\purple{\underline{\underline{Solution :}}}}}

\sf{\blue{\boxed{\bold{SI = \bigg\lgroup   \dfrac{PRT}{100}\bigg\rgroup }}}}

\sf{\red{\boxed{\bold{A = P + SI }}}}

\sf{\bold{A = \bigg\lgroup   P +  \dfrac{PRT}{100}\bigg\rgroup }}

\sf{\bold{A - P = \bigg\lgroup  \dfrac{PRT}{100}\bigg\rgroup }}

Substitute the known values...

\sf{\bold{ 5500 - 5000 = \bigg\lgroup  \dfrac{500 × 8 × T}{100}\bigg\rgroup }}

\sf{\bold{ 500 = \bigg\lgroup  \dfrac{40000 × T}{100}\bigg\rgroup }}

\sf{\bold{ 500 = 400 T }}

\sf{\bold{ T = \bigg\lgroup  \dfrac{500}{400}\bigg\rgroup = 1.25 }}

\sf{\bold{\orange{\underline{\underline{Answer :}}}}}

5,000 would become 5.500 at an interest rate of 8% per annum in a period of 1.25 years .

Similar questions