Math, asked by kaulini, 6 months ago

Watching from the top of a building and from a
window 10m
below the top. The angles of
depressions of car on the ground are found to be 60°
and 45° respectively.
Find the distance of the
car from the building.​

Answers

Answered by sahil12786
0

Answer:

pls reply

I need only your friendship

Answered by mathdude500
2

\large\underline{\sf{Solution-}}

Let AB be the building and AC be the window 10 m below the top of building.

and

Let car is at the point D when angle of depression from top of building B and window C is 60° and 45°.

Let distance between car and building, AD = 'x' meters.

Let AC = 'h' meter.

So, we have

  • AD = x meter

  • AC = h meter

  • BC = 10 meter.

Now,

\rm :\longmapsto\:In \: \triangle \:  ADC \:

\rm :\longmapsto\:tan45 \degree \:  =  \: \dfrac{AC}{AD}

\rm :\longmapsto\:1 = \dfrac{h}{x}

\bf\implies \:h \:  =  \: x -  -  - (1)

Now,

\rm :\longmapsto\:In \: \triangle \:  ABD

\rm :\longmapsto\:tan60 \degree \:  =  \: \dfrac{AB}{AD}

\rm :\longmapsto\: \sqrt{3}  = \dfrac{h + 10}{x}

\rm :\longmapsto\: \sqrt{3}x = x + 10 \:  \:   \:  \:  \: \:  \{ \: using \: (1) \}

\rm :\longmapsto\: \sqrt{3}x - x = 10

\rm :\longmapsto\: (\sqrt{3} -1) x = 10

\rm :\longmapsto\:x = \dfrac{10}{ \sqrt{3}  - 1}

\rm :\longmapsto\:x = \dfrac{10}{ \sqrt{3}  - 1}  \times \dfrac{ \sqrt{3}  + 1}{ \sqrt{3}  + 1}

\rm :\longmapsto\:x = \dfrac{10( \sqrt{3}  + 1)}{ {( \sqrt{3} )}^{2}  -  {1}^{2} }

\rm :\longmapsto\:x = \dfrac{10( \sqrt{3}  + 1)}{3 - 1}

\rm :\longmapsto\:x = \dfrac{10( \sqrt{3}  + 1)}{2}

\rm :\longmapsto\:x = 5( \sqrt{3}  + 1) \:

\rm :\longmapsto\:x = 5(1.732 + 1)

\rm :\longmapsto\:x = 5 \times 2.732

\bf\implies \:x \:  =  \: 13.66 \: m

Hence,

  • Distance between car and building is 13.66 meters

Additional Information :-

\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\sf Trigonometry\: Table \\ \begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\boxed{\begin{array}{ |c |c|c|c|c|c|} \bf\angle A & \bf{0}^{ \circ} & \bf{30}^{ \circ} & \bf{45}^{ \circ} & \bf{60}^{ \circ} & \bf{90}^{ \circ} \\ \\ \rm sin A & 0 & \dfrac{1}{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{ \sqrt{3}}{2} &1 \\ \\ \rm cos \: A & 1 & \dfrac{ \sqrt{3} }{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{1}{2} &0 \\ \\ \rm tan A & 0 & \dfrac{1}{ \sqrt{3} }&1 & \sqrt{3} & \rm \infty \\ \\ \rm cosec A & \rm \infty & 2& \sqrt{2} & \dfrac{2}{ \sqrt{3} } &1 \\ \\ \rm sec A & 1 & \dfrac{2}{ \sqrt{3} }& \sqrt{2} & 2 & \rm \infty \\ \\ \rm cot A & \rm \infty & \sqrt{3} & 1 & \dfrac{1}{ \sqrt{3} } & 0\end{array}}}\end{gathered}\end{gathered}\end{gathered} \end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered}

Attachments:
Similar questions